用于储能应用的Mg1−xCuxO/PMMA纳米复合材料介电性能的力学和温度依赖性

IF 2.3 4区 化学 Q3 CHEMISTRY, PHYSICAL
Ayshah S. Alatawi, Dalia E. Abulyazied, Asma M. Alturki, H. M. Abomostafa
{"title":"用于储能应用的Mg1−xCuxO/PMMA纳米复合材料介电性能的力学和温度依赖性","authors":"Ayshah S. Alatawi,&nbsp;Dalia E. Abulyazied,&nbsp;Asma M. Alturki,&nbsp;H. M. Abomostafa","doi":"10.1007/s00396-025-05395-7","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents an innovative approach to enhancing the mechanical and dielectric properties of poly(methyl methacrylate) (PMMA) films by embedding Mg₁₋ₓCuₓO nanoparticles with varying copper content (<i>x</i> = 0.05 to 0.2). The nanocomposite films, fabricated via a casting technique, exhibit a remarkable improvement in dielectric performance across a wide temperature range (30–180 °C) and frequency spectrum (0.1 Hz to 1 MHz). The incorporation of Mg₁₋ₓCuₓO nanoparticles significantly boosts the dielectric constant (<i>ε</i>′), with values increasing at elevated temperatures, indicating superior charge storage capability-critical for next-generation electronic applications. The electric odulus analysis reveals a temperature-dependent relaxation process, with interfacial polarization effects driving the observed peaks in dielectric loss (<i>ε</i>″) and imaginary modulus (<i>M</i>″). These peaks shift to higher frequencies with rising temperatures, highlighting enhanced charge carrier mobility. Furthermore, mechanical analysis demonstrates a substantial increase in longitudinal (<i>L</i>), shear (<i>G</i>), Young’s (<i>E</i>), and bulk (<i>B</i>) moduli with higher copper concentrations, offering superior mechanical strength alongside enhanced dielectric efficiency. This research paves the way for high-performance nanocomposite materials that meet the evolving demands of flexible electronics, capacitors, and sensors, offering a unique blend of mechanical robustness and dielectric excellence.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"303 5","pages":"923 - 936"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical and temperature dependence of dielectric properties for Mg1−xCuxO/PMMA nanocomposites used in energy storage applications\",\"authors\":\"Ayshah S. Alatawi,&nbsp;Dalia E. Abulyazied,&nbsp;Asma M. Alturki,&nbsp;H. M. Abomostafa\",\"doi\":\"10.1007/s00396-025-05395-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents an innovative approach to enhancing the mechanical and dielectric properties of poly(methyl methacrylate) (PMMA) films by embedding Mg₁₋ₓCuₓO nanoparticles with varying copper content (<i>x</i> = 0.05 to 0.2). The nanocomposite films, fabricated via a casting technique, exhibit a remarkable improvement in dielectric performance across a wide temperature range (30–180 °C) and frequency spectrum (0.1 Hz to 1 MHz). The incorporation of Mg₁₋ₓCuₓO nanoparticles significantly boosts the dielectric constant (<i>ε</i>′), with values increasing at elevated temperatures, indicating superior charge storage capability-critical for next-generation electronic applications. The electric odulus analysis reveals a temperature-dependent relaxation process, with interfacial polarization effects driving the observed peaks in dielectric loss (<i>ε</i>″) and imaginary modulus (<i>M</i>″). These peaks shift to higher frequencies with rising temperatures, highlighting enhanced charge carrier mobility. Furthermore, mechanical analysis demonstrates a substantial increase in longitudinal (<i>L</i>), shear (<i>G</i>), Young’s (<i>E</i>), and bulk (<i>B</i>) moduli with higher copper concentrations, offering superior mechanical strength alongside enhanced dielectric efficiency. This research paves the way for high-performance nanocomposite materials that meet the evolving demands of flexible electronics, capacitors, and sensors, offering a unique blend of mechanical robustness and dielectric excellence.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":520,\"journal\":{\"name\":\"Colloid and Polymer Science\",\"volume\":\"303 5\",\"pages\":\"923 - 936\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloid and Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00396-025-05395-7\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00396-025-05395-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种创新的方法,通过嵌入不同铜含量(x = 0.05至0.2)的Mg₁ₓCuₓO纳米颗粒来增强聚甲基丙烯酸甲酯(PMMA)薄膜的机械和介电性能。通过铸造技术制备的纳米复合薄膜在宽温度范围(30-180°C)和频谱范围(0.1 Hz至1 MHz)内的介电性能有显著改善。Mg₁ₓCuₓO纳米颗粒的掺入显著提高了介电常数(ε′),在高温下介电常数增加,表明具有优越的电荷存储能力,这对下一代电子应用至关重要。电odulus分析揭示了一个温度依赖的弛豫过程,界面极化效应驱动了观察到的介电损耗(ε″)和虚模量(M″)的峰值。随着温度的升高,这些峰值向更高的频率移动,突出了电荷载流子迁移率的增强。此外,力学分析表明,随着铜浓度的增加,纵向(L)、剪切(G)、杨氏(E)和体积(B)模量大幅增加,在提高介电效率的同时提供了优越的机械强度。这项研究为高性能纳米复合材料铺平了道路,满足了柔性电子、电容器和传感器不断发展的需求,提供了独特的机械稳健性和卓越的介电性。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanical and temperature dependence of dielectric properties for Mg1−xCuxO/PMMA nanocomposites used in energy storage applications

This study presents an innovative approach to enhancing the mechanical and dielectric properties of poly(methyl methacrylate) (PMMA) films by embedding Mg₁₋ₓCuₓO nanoparticles with varying copper content (x = 0.05 to 0.2). The nanocomposite films, fabricated via a casting technique, exhibit a remarkable improvement in dielectric performance across a wide temperature range (30–180 °C) and frequency spectrum (0.1 Hz to 1 MHz). The incorporation of Mg₁₋ₓCuₓO nanoparticles significantly boosts the dielectric constant (ε′), with values increasing at elevated temperatures, indicating superior charge storage capability-critical for next-generation electronic applications. The electric odulus analysis reveals a temperature-dependent relaxation process, with interfacial polarization effects driving the observed peaks in dielectric loss (ε″) and imaginary modulus (M″). These peaks shift to higher frequencies with rising temperatures, highlighting enhanced charge carrier mobility. Furthermore, mechanical analysis demonstrates a substantial increase in longitudinal (L), shear (G), Young’s (E), and bulk (B) moduli with higher copper concentrations, offering superior mechanical strength alongside enhanced dielectric efficiency. This research paves the way for high-performance nanocomposite materials that meet the evolving demands of flexible electronics, capacitors, and sensors, offering a unique blend of mechanical robustness and dielectric excellence.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Colloid and Polymer Science
Colloid and Polymer Science 化学-高分子科学
CiteScore
4.60
自引率
4.20%
发文量
111
审稿时长
2.2 months
期刊介绍: Colloid and Polymer Science - a leading international journal of longstanding tradition - is devoted to colloid and polymer science and its interdisciplinary interactions. As such, it responds to a demand which has lost none of its actuality as revealed in the trends of contemporary materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信