Colloid and Polymer Science最新文献

筛选
英文 中文
Effective properties of binary chemical reaction with Brownian and thermophoresis on the radiative flow of nanofluid within an inclined heated channel 布朗和热泳二元化学反应对倾斜加热通道内纳米流体辐射流的有效特性
IF 2.2 4区 化学
Colloid and Polymer Science Pub Date : 2024-05-31 DOI: 10.1007/s00396-024-05274-7
R. K. Sahoo, S. R. Mishra, Subhajit Panda
{"title":"Effective properties of binary chemical reaction with Brownian and thermophoresis on the radiative flow of nanofluid within an inclined heated channel","authors":"R. K. Sahoo,&nbsp;S. R. Mishra,&nbsp;Subhajit Panda","doi":"10.1007/s00396-024-05274-7","DOIUrl":"10.1007/s00396-024-05274-7","url":null,"abstract":"<div><p>An investigation is proposed for the Buongiorno model nanofluid flow within a converging as well as diverging channel which is inclined with the plane walls. The impact of magnetization is reported for the imposed of applied magnetic field along the normal direction of the flow. Additionally, the behavior of thermal radiation and the effect of binary chemical ration are implemented in the energy and concentration equation respectively. It is superimposed that both the channel walls are uniformly heated, and it is also assumed that concentration of the nanoparticles near the walls is considered as constant. However, the Cartesian coordinate system is imposed to describe the proposed designed flow problem. The formulated problem governed by nonlinear coupled partial differential equations is generalized and renovated to corresponding nondimensional form by implementing appropriate similarity rules. Further, the transformed equations are solved numerically using Runge-Kutta fourth order accompanied by shooting technique. The physical behavior of the standard factors involved in the problem is displayed graphically. Validation of the result is presented with an earlier study which shows a good correlation as well as convergence analysis of the proposed methodology. Further, the important outcomes of the proposed study are deployed as follows: the velocity distribution retards for the enhanced Reynolds number significantly; however, the Brownian motion is treated as a controlling parameter for the fluid temperature and reverse impact observed in case of fluid concentration.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div><p>• The Buongiorno model nanofluid flow within a converging and diverging channel inclined with the plane walls is analysed.</p><p>• The behaviour of not only thermal radiation but also the effect of binary chemical ration is implemented.</p><p>• It is superimposed that both the channel walls are uniformly heated and it is also assumed that concentration of the nanoparticles near the walls is considered as constant.</p><p>• The transformed equations are solved numerically using Runge-Kutta fourth-order accompanied by shooting technique.</p></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"302 9","pages":"1337 - 1352"},"PeriodicalIF":2.2,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141194820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of functional groups of plasticizers on starch plasticization 增塑剂官能团对淀粉塑化的影响
IF 2.2 4区 化学
Colloid and Polymer Science Pub Date : 2024-05-30 DOI: 10.1007/s00396-024-05272-9
Yanxue Chen, Ziyi Wang, Lexin Jia, Chaodan Niu, Ziyue Hu, Chengyuan Wu, Siqun Zhang, Jie Ren, Guoqiang Qin, Guanglei Zhang, Jinhui Yang
{"title":"Effect of functional groups of plasticizers on starch plasticization","authors":"Yanxue Chen,&nbsp;Ziyi Wang,&nbsp;Lexin Jia,&nbsp;Chaodan Niu,&nbsp;Ziyue Hu,&nbsp;Chengyuan Wu,&nbsp;Siqun Zhang,&nbsp;Jie Ren,&nbsp;Guoqiang Qin,&nbsp;Guanglei Zhang,&nbsp;Jinhui Yang","doi":"10.1007/s00396-024-05272-9","DOIUrl":"10.1007/s00396-024-05272-9","url":null,"abstract":"<div><p>To investigate the impact of plasticizer functional groups on starch plasticization, three distinct plasticizers were selected in this study: ethylene glycol (EG), ethylenediamine (EDA), and ethylenebisformamide (EBF). Three models of the plasticizer/starch system were constructed using molecular dynamics (MD) simulations, and the analysis encompassed the computation of mean square displacement (MSD), radial distribution function (RDF), and hydrogen bonding energy for each system. Additionally, the proportions of simulation were used to prepare thermoplastic starch films, which were subsequently subjected to examinations such as DSC, XRD, FT-IR, SEM, and mechanical property testing. Comparative analysis of the simulation data from the three systems and the properties of the manufactured thermoplastic starch (TPS) established that the diverse functional groups of plasticizers significantly influenced starch plasticization. In different plasticizer functional group types, it was observed that hydroxyl groups in EG and amino groups in EDA predominantly form hydrogen bonds with hydroxyl groups in starch molecular chain. In contrast, amide groups in EBF can establish hydrogen bonds not only with hydroxyl groups of starch but also with ether bonds on the starch main chain, thereby resulting in more effective starch plasticization.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"302 9","pages":"1323 - 1335"},"PeriodicalIF":2.2,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141194928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing synthesis and application of an enhanced oil recovery agent: stability assessment of the optimized nanostructured PNIPAM/PS core–shell polymer using a developed DLVO-based model 优化提高石油采收率剂的合成和应用:利用开发的基于 DLVO 的模型对优化的纳米结构 PNIPAM/PS 核壳聚合物进行稳定性评估
IF 2.2 4区 化学
Colloid and Polymer Science Pub Date : 2024-05-30 DOI: 10.1007/s00396-024-05270-x
Ramin Mohammadipour, Hossein Ali Akhlaghi Amiri, Ali Dashti, Seyed Farzan Tajbakhsh
{"title":"Optimizing synthesis and application of an enhanced oil recovery agent: stability assessment of the optimized nanostructured PNIPAM/PS core–shell polymer using a developed DLVO-based model","authors":"Ramin Mohammadipour,&nbsp;Hossein Ali Akhlaghi Amiri,&nbsp;Ali Dashti,&nbsp;Seyed Farzan Tajbakhsh","doi":"10.1007/s00396-024-05270-x","DOIUrl":"10.1007/s00396-024-05270-x","url":null,"abstract":"<div><p>To improve the efficiency of hydrophilic polymers in oil reservoirs, a method encapsulates the polymer within a protective shell, safeguarding the core polymer and enabling controlled release in demanding, high-temperature conditions. Poly(N-isopropylacrylamide) nanoparticles are encapsulated with polystyrene shells through emulsion polymerization in this study. Varying the amounts of shell monmer and crosslinking agents resulted thick, sphere-shaped shells with homogeneous morphology, which protects the core polymer and enabling controlled release. Structural and morphological properties are characterized using Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (H<sup>1</sup>NMR), dynamic light scattering (DLS), and scanning electron microscope (SEM) imaging. Increasing the styrene amounts lead to larger particles, while higher crosslinker amounts result in a narrower size distribution. Thermal testing indicates heat resistance up to 300 °C, suitable for enhanced oil recovery (EOR) applications. Rheological tests determine an optimal 30-day release for the PNIPAM core, with the CS polymer showing increased viscosity under harsh conditions. The colloidal stability model estblished by Derjaguin, Landau, Verwey, and Overbeek (DLVO theory) and experimental results demonstrate good stability and energy barriers at room temperature, but decreased stability and increased agglomeration at higher temperatures. Thickening the styrene shell leads to particle agglomeration and unsuitable stability. The study confirms the effectiveness of the model in analyzing CS colloidal latex systems.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"302 9","pages":"1305 - 1321"},"PeriodicalIF":2.2,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141194763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Liquid crystalline structuring in dilute suspensions of high aspect ratio clay nanosheets 高纵横比粘土纳米片稀释悬浮液中的液晶结构
IF 2.4 4区 化学
Colloid and Polymer Science Pub Date : 2024-05-27 DOI: 10.1007/s00396-024-05268-5
Osvaldo Trigueiro Neto, Sabine Rosenfeldt, Paulo Henrique Michels-Brito, Konstanse Kvalem Seljelid, Andrew Akanno, Bruno Telli Ceccato, Rini Padinjakkara Ravindranathan, Tomás S. Plivelic, Leander Michels, Josef Breu, Kenneth D. Knudsen, Jon Otto Fossum
{"title":"Liquid crystalline structuring in dilute suspensions of high aspect ratio clay nanosheets","authors":"Osvaldo Trigueiro Neto, Sabine Rosenfeldt, Paulo Henrique Michels-Brito, Konstanse Kvalem Seljelid, Andrew Akanno, Bruno Telli Ceccato, Rini Padinjakkara Ravindranathan, Tomás S. Plivelic, Leander Michels, Josef Breu, Kenneth D. Knudsen, Jon Otto Fossum","doi":"10.1007/s00396-024-05268-5","DOIUrl":"https://doi.org/10.1007/s00396-024-05268-5","url":null,"abstract":"<p>Aqueous liquid suspensions of high aspect ratio 2D clay nanosheets were investigated using small angle X-ray scattering (SAXS). The high aspect ratio of synthetic fluorohectorite clays allows for investigation of liquid crystalline orientational order for relatively large nanosheet spacings, in the range which can produce structural coloration, thus providing two handles for determining the nanosheet spacings: SAXS and visible color. Various clay concentrations were investigated, and good agreement with previous work on structural coloration from such suspensions was obtained. Particular attention is given to the confinement caused by the container geometry, where both cylindrical and flat confinements were investigated. In both cases, the SAXS data suggest coherent regions that have a nematic inter-orientational distribution that surprisingly is linked to the container geometry, which apparently determines the efficiency of packing of the suspension. For both geometries, the analysis suggests that these coherent regions have a 1D lamellar periodic intra-structure with uniform nanosheet spacing determined by the clay concentration and a typical correlation length in the range of 200 to 500 nm.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\u0000","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"21 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141169328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational analysis of MHD channel flow of Maxwell fluid with radiation and chemical reaction effects 具有辐射和化学反应效应的麦克斯韦流体 MHD 沟道流计算分析
IF 2.2 4区 化学
Colloid and Polymer Science Pub Date : 2024-05-25 DOI: 10.1007/s00396-024-05267-6
K. Sudarmozhi, D. Iranian, Hadil Alhazmi, Ilyas Khan, A. F. Aljohani
{"title":"Computational analysis of MHD channel flow of Maxwell fluid with radiation and chemical reaction effects","authors":"K. Sudarmozhi,&nbsp;D. Iranian,&nbsp;Hadil Alhazmi,&nbsp;Ilyas Khan,&nbsp;A. F. Aljohani","doi":"10.1007/s00396-024-05267-6","DOIUrl":"10.1007/s00396-024-05267-6","url":null,"abstract":"<div><p>We embarked on an investigation with potential implications for studying blood flow within the cardiovascular system; keeping this application in mind, this investigation aims to provide numerical evaluations for a complex problem involving MHD flow, chemical reactivity, and energy transfer of a Maxwell fluid within a channel. The governing equations for momentum, concentration, and energy are renovated into ODEs for concentrated analysis using a similarity transformation. Dimensionless velocity, temperature, and concentration fields corresponding to steady motions of Maxwell fluid over a channel are numerically recognized using the bvp4c inbuilt software in MATLAB. We validated our results with existing work to check the gained results and got an excellent agreement. The impression of physical parameters on fluid motion is plotted and debated. The quantitative outcome of this study is that the Deborah number surges, and both velocity and temperature experience enhancement while the concentration within the fluid diminishes. This knowledge can be applied to various fields, such as material processing, biomedical engineering, and environmental sciences, to optimize processes and design systems accordingly. The outcomes and key findings of this study indicate that concentration distribution declines with the introduction of a chemical reaction and a complex Schmidt number. Additionally, the quantitative results of this learning are that the impression of the magnetic parameter is observed, resulting in reduced velocity and temperature profiles, while concentration profiles exhibit an increase across the entire domain. Furthermore, the rise in the Reynolds number corresponds to an escalation in the temperature outline.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"302 8","pages":"1291 - 1304"},"PeriodicalIF":2.2,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141149517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Entropy generation analysis of MHD nanofluid in a corrugated vertical walls enclosure with a rectangular baffle using the Brinkmann-Forchheimer model 利用布林克曼-福克海默模型分析带矩形障板的波纹状垂直壁围墙中的 MHD 纳米流体的熵产生情况
IF 2.2 4区 化学
Colloid and Polymer Science Pub Date : 2024-05-18 DOI: 10.1007/s00396-024-05264-9
Asad Ali, Kejia Pan, Rashid Ali, Muhammad Waqas Ashraf
{"title":"Entropy generation analysis of MHD nanofluid in a corrugated vertical walls enclosure with a rectangular baffle using the Brinkmann-Forchheimer model","authors":"Asad Ali,&nbsp;Kejia Pan,&nbsp;Rashid Ali,&nbsp;Muhammad Waqas Ashraf","doi":"10.1007/s00396-024-05264-9","DOIUrl":"10.1007/s00396-024-05264-9","url":null,"abstract":"<div><p>Copper is abundant and has good conductivity, corrosion resistance, and malleability. These properties affect the behavior of nanofluids by contributing to the interaction between nanoparticles and the magnetic field. This work aims to assess the thermal transfer characteristics of a Cu-water nanofluid filled in an enclosure having vertical wavy walls under the influence of natural convection. The system also experiences the existence of a constant inclined magnetic field and features an inner heated rectangular baffle. In this study, a comprehensive analysis is conducted on several thermo-physical parameters, including the Rayleigh number (<span>({10}^{3} le {text{Ra}} le {10}^{5})</span>), Hartmann number <span>((0 le {text{Ha}} le 150),)</span> nanoparticle concentration <span>((0.00 le phi le 0.09),)</span> and porosity <span>((0.2 le varepsilon le 0.8))</span>. The Galerkin finite element method (GFEM) is employed in this study to conduct calculations, enabling a comprehensive analysis of streamlines, isotherms, entropy generation, and mean Nusselt numbers. The key findings demonstrate that raising the number of Rayleigh and porosity raises the velocity profile within the enclosure. For the various angles of the inner rectangular baffle <span>((theta =0^circ ,30^circ ,60^circ ,mathrm{ and} 90^circ ))</span> at <span>({text{Ra}}={10}^{3}- {10}^{5})</span>, the calculated maximum increase in <span>({{text{Nu}}}_{{text{avg}}})</span> are <span>(77.5%, 78.3%)</span>, <span>(81.9% ,)</span> and <span>(82.2%,)</span> respectively. Furthermore, significant rise in the value of (<span>({S}_{{text{Total}}})</span>) up to <span>(96.1%, 11.1%)</span>, and <span>(8.8%)</span> is experienced when <span>(left(Raright), left(phi right),)</span> and <span>((varepsilon ))</span> increase, while <span>(19.5%)</span> decrement is observed when (<span>({text{Ha}})</span>) increases. Additionally, the average Bejan number <span>(({{text{Be}}}_{{text{avg}}}))</span> grows as the fraction volume of nanoparticle <span>((phi ))</span> climbs and the Hartmann number <span>(({text{Ha}}))</span> declines. The geometry configurations employed in this research have real-world applications across different engineering fields, such as energy storage, chemical processing equipment, biomedical systems, solar collectors, heat exchangers, and cooling systems for electronic devices.</p></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"302 8","pages":"1269 - 1290"},"PeriodicalIF":2.2,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141059693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of sorption properties of zirconia, alumina, and silica in relation to repellents 氧化锆、氧化铝和二氧化硅与驱虫剂相关的吸附特性研究
IF 2.2 4区 化学
Colloid and Polymer Science Pub Date : 2024-05-16 DOI: 10.1007/s00396-024-05260-z
Sergei A. Zverev, Yana V. Vinogradova, Anna A. Selivanova, Roman D. Solovov, Konstantin A. Sakharov, Anatoliy A. Ischenko, Sergei V. Andreev
{"title":"Study of sorption properties of zirconia, alumina, and silica in relation to repellents","authors":"Sergei A. Zverev,&nbsp;Yana V. Vinogradova,&nbsp;Anna A. Selivanova,&nbsp;Roman D. Solovov,&nbsp;Konstantin A. Sakharov,&nbsp;Anatoliy A. Ischenko,&nbsp;Sergei V. Andreev","doi":"10.1007/s00396-024-05260-z","DOIUrl":"10.1007/s00396-024-05260-z","url":null,"abstract":"<div><p>In this work, the morphology of zirconia, alumina, and silicas was studied, and static sorption of the repellents <i>N, N</i>-diethyl-3-methylbenzamide and ethyl-3-[acetyl(butyl)amino]propionate on these oxides was carried out. ZrO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, and SiO<sub>2</sub> phenyl were shown to have high sorption activity to the repellents <i>N, N</i>-diethyl-3-methylbenzamide (239 mg/g for SiO<sub>2</sub> phenyl) and ethyl-3-[acetyl(butyl)amino]propionate (251 mg/g for ZrO<sub>2</sub>). Pointedly, it was found that despite having the largest pore volume and high specific surface area (compared to the other studied oxides), SiO<sub>2</sub> C2 has a significantly inferior sorption capacity in respect to other oxides, in particular SiO<sub>2</sub> phenyl, which can be explained by the presence of the phenyl group in the latter that has chemical affinity for repellent molecules. Obtained isotherms of SiO<sub>2</sub> 300 also confirm the low sorption activity towards <i>N, N</i>-diethyl-3-methylbenzamide. The sorption equilibrium for both repellents, in most cases, is described by the Langmuir monomolecular adsorption model. The obtained results suggest that the studied zirconia, alumina, and silica can be used as carrier components of repellents.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><img></picture></div></div></figure></div></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"302 8","pages":"1259 - 1268"},"PeriodicalIF":2.2,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140966659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of the effect of poly (sodium styrene sulfonate) on sodium glycodeoxycholate and sodium tetradecyl sulfate mixed micelle 研究聚(苯乙烯磺酸钠)对甘脱氧胆酸钠和十四烷基硫酸钠混合胶束的影响
IF 2.2 4区 化学
Colloid and Polymer Science Pub Date : 2024-05-09 DOI: 10.1007/s00396-024-05263-w
Anirudh Srivastava, Mukul Kumar, Doli Devi, Javed Masood Khan, Sandeep Kumar Singh
{"title":"Investigation of the effect of poly (sodium styrene sulfonate) on sodium glycodeoxycholate and sodium tetradecyl sulfate mixed micelle","authors":"Anirudh Srivastava,&nbsp;Mukul Kumar,&nbsp;Doli Devi,&nbsp;Javed Masood Khan,&nbsp;Sandeep Kumar Singh","doi":"10.1007/s00396-024-05263-w","DOIUrl":"10.1007/s00396-024-05263-w","url":null,"abstract":"<div><p>The interactions of polyelectrolyte poly (sodium styrene sulfonate or NaPSS) and anionic surfactants, sodium glycodeoxycholate (SGDC) and sodium tetradecyl sulfate (STS), as well as their combination (SGDC + STS) at different mole fraction ratios, were investigated using surface tension analysis. In the SGDC + STS binary mixture, when the amount of NaPSS (0.005–0.03%) increased from <span>({alpha }_{{text{SGDC}}})</span> 0.0 to 1.0, increasing the critical micellization concentration (cmc) of the mixtures. The minimum cmc values were found from 0.833 to 1.480 mmol L<sup>−1</sup> in the presence of 0.03% of NaPSS. Clint, Rubingh, Motomura, and Rodenas approaches were used to evaluate the ideal cmc, activity coefficients (<i>f</i><sub>i</sub>), interaction parameter (–<i>β</i>), micellar compositions (<i>x</i>), and ideal micellar composition of (<i>x</i><sup><i>id</i></sup>) of SGDC + STS mixtures. Synergism has been demonstrated by the experimental values of <i>c</i><sub><i>0m</i></sub> being lower than the ideal values in water. Moreover, by adding NaPSS from 0.005 to 0.03%, the synergism interaction was eliminated and antagonism behavior was developed. The standard Gibb’s free energy of micellization (<span>({Delta G}_{m}^{0}))</span> and surface excess (<i>Γ</i>) and surface area per absorbed molecules (<i>A</i><sub>min</sub>) was decreased or increased depending on NaPSS amount in the SGDC + STS mixture with varying <span>({a}_{{text{SGDC}}})</span>.</p></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"302 8","pages":"1247 - 1257"},"PeriodicalIF":2.2,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140933526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polyelectrolyte complexes hydrogels based on chitosan/pectin/NaCl for potentially wound dressing: development, characterization, and evaluation 基于壳聚糖/pectin/NaCl 的聚电解质复合物水凝胶用于潜在伤口敷料:开发、表征和评估
IF 2.2 4区 化学
Colloid and Polymer Science Pub Date : 2024-05-08 DOI: 10.1007/s00396-024-05261-y
Micaela Ferrante, Vera A. Alvarez, Liesel B. Gende, Diego Guerrieri, Eduardo Chuluyan, Jimena S. Gonzalez
{"title":"Polyelectrolyte complexes hydrogels based on chitosan/pectin/NaCl for potentially wound dressing: development, characterization, and evaluation","authors":"Micaela Ferrante,&nbsp;Vera A. Alvarez,&nbsp;Liesel B. Gende,&nbsp;Diego Guerrieri,&nbsp;Eduardo Chuluyan,&nbsp;Jimena S. Gonzalez","doi":"10.1007/s00396-024-05261-y","DOIUrl":"10.1007/s00396-024-05261-y","url":null,"abstract":"<div><p>In this research, hydrogels based on chitosan, pectin, and salt (NaCl) were synthesized through the formation of polyelectrolyte complexes (PECs). The synthesis parameters, including pH, salinity, and polymer concentration, were varied to explore their influence. Weight and texture analysis revealed differences in hydrogel morphology. Swelling behavior studies showed hydrogels synthesized at pH 4 exhibiting higher swelling capacities. Additionally, the presence of salt affected the formation process. Thermal characterization showed a first decomposition step occurring around 180–224 °C. Morphological testing using SEM highlighted differences in pore size and distribution, notably when salt was included in the formulation (pore wall diameter without NaCl, 2.2 ± 1.1 um, with NaCl, 4.7 ± 1.2 um). Physico-chemical tests, including Zeta potential, FTIR, and XRD, provided insights into interactions within the hydrogels: hydrogen bonds and electrostatic interactions. Moreover, antibacterial tests demonstrated efficacy against <i>Escherichia coli</i> and <i>Staphylococcus aureus</i>, with varying inhibition degrees correlated with NaCl content (halo for <i>E. coli</i> without NaCl, 8 and 10 mm; with NaCl, 10 and 15 mm). Further assessments, including water vapor transmission rate (WVTR) and lidocaine release assays, highlighted hydrogel potential for wound dressing applications, with suitable moisture retention properties and controlled drug release capabilities. The release percentage achieved by the hydrogel with 0.15 M NaCl was higher than without salt (111.1% ± 9.5% and 31.16% ± 15.13%, respectively). Preliminary in vivo wound healing studies showed promising results. Overall, our findings emphasize the tunable properties of these hydrogels and their potential for wound dressings.</p></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"302 8","pages":"1231 - 1245"},"PeriodicalIF":2.2,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140933694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the role of inclined magnetic field in water-based hybrid nanofluid flow containing copper and alumina nanoparticles over a convectively heated surface: a numerical investigation 探索倾斜磁场在对流加热表面上含有铜和氧化铝纳米颗粒的水基混合纳米流体流动中的作用:数值研究
IF 2.2 4区 化学
Colloid and Polymer Science Pub Date : 2024-05-02 DOI: 10.1007/s00396-024-05259-6
Showkat Ahmad Lone, Ali M. Mahnashi, Waleed Hamali, Hussam Alrabaiah, Anwar Saeed
{"title":"Exploring the role of inclined magnetic field in water-based hybrid nanofluid flow containing copper and alumina nanoparticles over a convectively heated surface: a numerical investigation","authors":"Showkat Ahmad Lone,&nbsp;Ali M. Mahnashi,&nbsp;Waleed Hamali,&nbsp;Hussam Alrabaiah,&nbsp;Anwar Saeed","doi":"10.1007/s00396-024-05259-6","DOIUrl":"10.1007/s00396-024-05259-6","url":null,"abstract":"<div><p>In this analysis, a numerical investigation of hybrid nanofluid flow composed of copper and alumina nanoparticles over an extending sheet is deliberated. The sheet surface is assumed to be heated by considering the convective condition, and there is no mass flow at the sheet surface by assuming the zero flux of mass constraints. The modeled ordinary differential equations, which are obtained by transforming the partial differential equations using suitable similarity variables, are evaluated numerically by adopting the bvp4c scheme. The main theme of this analysis is to investigate the applications of an inclined magnetic field toward the hybrid nanofluid flow over a convectively heated surface. The results obtained from this analysis show that the dragging force at the sheet’s surface has been greatly increased by the magnetic factor and angle of inclination. Additionally, the angle of inclination greatly influenced the heat transfer rate, temperature, and concentration distributions when <i>α</i> = 90<sup>0</sup> as compared to <i>α</i> &lt; 90<sup>0</sup>.</p></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"302 8","pages":"1219 - 1230"},"PeriodicalIF":2.2,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140886331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信