基于微流控技术的大孔径高负载琼脂糖微球制备及血清抗体纯化

IF 2.2 4区 化学 Q3 CHEMISTRY, PHYSICAL
Guanglei Chang, Miaomiao Yang, Zhaobin Xu, Xinling Wang, Wenyao Li, Meixia He, Jintao Zhang, Yuanzhi Xu, Lulu Wang, Liguo Zhang
{"title":"基于微流控技术的大孔径高负载琼脂糖微球制备及血清抗体纯化","authors":"Guanglei Chang,&nbsp;Miaomiao Yang,&nbsp;Zhaobin Xu,&nbsp;Xinling Wang,&nbsp;Wenyao Li,&nbsp;Meixia He,&nbsp;Jintao Zhang,&nbsp;Yuanzhi Xu,&nbsp;Lulu Wang,&nbsp;Liguo Zhang","doi":"10.1007/s00396-025-05375-x","DOIUrl":null,"url":null,"abstract":"<div><p>The performance of chromatographic media affects the efficiency of purification. In this study, based on a T-type microfluidic droplet generation system, agarose microspheres with large pore size and high load were prepared by adjusting the viscosity of a 4% agarose solution to 70 mPa·s at high temperature. Optical microscopy revealed that the self-made agarose microspheres had a good spherical structure with an average particle size of 82.81 μm and a CV value of 0.0576. Subsequently, the stability and mechanical strength of the self-made agarose microspheres were improved by cross-linking and activation with epichlorohydrin. After the cross-linking and activation, the agarose microspheres were grafted with Protein A to make it have specific adsorption capacity for IgG. The adsorption capacity of the self-made agarose microspheres grafted with Protein A for IgG was 87 mg/g. In the complex serum environment, the agarose microspheres grafted with Protein A still maintained good IgG adsorption capacity and selectivity, demonstrating their potential in practical applications. This study demonstrates the great potential of microfluidic technology in the design and preparation of bio-separation media. By precisely controlling the particle size and pore size of the microspheres, the purification efficiency and selectivity can be significantly improved, providing a new solution for the efficient purification of bio-products.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"303 4","pages":"693 - 711"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of agarose microspheres with large pore size and high load and purification of antibody in serum based on microfluidic technology\",\"authors\":\"Guanglei Chang,&nbsp;Miaomiao Yang,&nbsp;Zhaobin Xu,&nbsp;Xinling Wang,&nbsp;Wenyao Li,&nbsp;Meixia He,&nbsp;Jintao Zhang,&nbsp;Yuanzhi Xu,&nbsp;Lulu Wang,&nbsp;Liguo Zhang\",\"doi\":\"10.1007/s00396-025-05375-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The performance of chromatographic media affects the efficiency of purification. In this study, based on a T-type microfluidic droplet generation system, agarose microspheres with large pore size and high load were prepared by adjusting the viscosity of a 4% agarose solution to 70 mPa·s at high temperature. Optical microscopy revealed that the self-made agarose microspheres had a good spherical structure with an average particle size of 82.81 μm and a CV value of 0.0576. Subsequently, the stability and mechanical strength of the self-made agarose microspheres were improved by cross-linking and activation with epichlorohydrin. After the cross-linking and activation, the agarose microspheres were grafted with Protein A to make it have specific adsorption capacity for IgG. The adsorption capacity of the self-made agarose microspheres grafted with Protein A for IgG was 87 mg/g. In the complex serum environment, the agarose microspheres grafted with Protein A still maintained good IgG adsorption capacity and selectivity, demonstrating their potential in practical applications. This study demonstrates the great potential of microfluidic technology in the design and preparation of bio-separation media. By precisely controlling the particle size and pore size of the microspheres, the purification efficiency and selectivity can be significantly improved, providing a new solution for the efficient purification of bio-products.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":520,\"journal\":{\"name\":\"Colloid and Polymer Science\",\"volume\":\"303 4\",\"pages\":\"693 - 711\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloid and Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00396-025-05375-x\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00396-025-05375-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

色谱介质的性能直接影响到纯化的效率。本研究基于t型微流控液滴生成系统,在高温条件下,将4%琼脂糖溶液粘度调节至70 mPa·s,制备了大孔径、高负载的琼脂糖微球。光学显微镜结果表明,自制琼脂糖微球具有良好的球形结构,平均粒径为82.81 μm, CV值为0.0576。随后,通过交联和环氧氯丙烷活化,提高了自制琼脂糖微球的稳定性和机械强度。经交联活化后,将琼脂糖微球接枝蛋白A,使其对IgG具有特异性吸附能力。蛋白A接枝的琼脂糖微球对IgG的吸附量为87 mg/g。在复杂的血清环境中,接枝蛋白A的琼脂糖微球仍然保持了良好的IgG吸附能力和选择性,显示了其实际应用潜力。该研究显示了微流控技术在生物分离介质设计和制备方面的巨大潜力。通过对微球粒径和孔径的精确控制,可以显著提高微球的纯化效率和选择性,为生物制品的高效纯化提供新的解决方案。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preparation of agarose microspheres with large pore size and high load and purification of antibody in serum based on microfluidic technology

The performance of chromatographic media affects the efficiency of purification. In this study, based on a T-type microfluidic droplet generation system, agarose microspheres with large pore size and high load were prepared by adjusting the viscosity of a 4% agarose solution to 70 mPa·s at high temperature. Optical microscopy revealed that the self-made agarose microspheres had a good spherical structure with an average particle size of 82.81 μm and a CV value of 0.0576. Subsequently, the stability and mechanical strength of the self-made agarose microspheres were improved by cross-linking and activation with epichlorohydrin. After the cross-linking and activation, the agarose microspheres were grafted with Protein A to make it have specific adsorption capacity for IgG. The adsorption capacity of the self-made agarose microspheres grafted with Protein A for IgG was 87 mg/g. In the complex serum environment, the agarose microspheres grafted with Protein A still maintained good IgG adsorption capacity and selectivity, demonstrating their potential in practical applications. This study demonstrates the great potential of microfluidic technology in the design and preparation of bio-separation media. By precisely controlling the particle size and pore size of the microspheres, the purification efficiency and selectivity can be significantly improved, providing a new solution for the efficient purification of bio-products.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Colloid and Polymer Science
Colloid and Polymer Science 化学-高分子科学
CiteScore
4.60
自引率
4.20%
发文量
111
审稿时长
2.2 months
期刊介绍: Colloid and Polymer Science - a leading international journal of longstanding tradition - is devoted to colloid and polymer science and its interdisciplinary interactions. As such, it responds to a demand which has lost none of its actuality as revealed in the trends of contemporary materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信