Preparation of agarose microspheres with large pore size and high load and purification of antibody in serum based on microfluidic technology

IF 2.2 4区 化学 Q3 CHEMISTRY, PHYSICAL
Guanglei Chang, Miaomiao Yang, Zhaobin Xu, Xinling Wang, Wenyao Li, Meixia He, Jintao Zhang, Yuanzhi Xu, Lulu Wang, Liguo Zhang
{"title":"Preparation of agarose microspheres with large pore size and high load and purification of antibody in serum based on microfluidic technology","authors":"Guanglei Chang,&nbsp;Miaomiao Yang,&nbsp;Zhaobin Xu,&nbsp;Xinling Wang,&nbsp;Wenyao Li,&nbsp;Meixia He,&nbsp;Jintao Zhang,&nbsp;Yuanzhi Xu,&nbsp;Lulu Wang,&nbsp;Liguo Zhang","doi":"10.1007/s00396-025-05375-x","DOIUrl":null,"url":null,"abstract":"<div><p>The performance of chromatographic media affects the efficiency of purification. In this study, based on a T-type microfluidic droplet generation system, agarose microspheres with large pore size and high load were prepared by adjusting the viscosity of a 4% agarose solution to 70 mPa·s at high temperature. Optical microscopy revealed that the self-made agarose microspheres had a good spherical structure with an average particle size of 82.81 μm and a CV value of 0.0576. Subsequently, the stability and mechanical strength of the self-made agarose microspheres were improved by cross-linking and activation with epichlorohydrin. After the cross-linking and activation, the agarose microspheres were grafted with Protein A to make it have specific adsorption capacity for IgG. The adsorption capacity of the self-made agarose microspheres grafted with Protein A for IgG was 87 mg/g. In the complex serum environment, the agarose microspheres grafted with Protein A still maintained good IgG adsorption capacity and selectivity, demonstrating their potential in practical applications. This study demonstrates the great potential of microfluidic technology in the design and preparation of bio-separation media. By precisely controlling the particle size and pore size of the microspheres, the purification efficiency and selectivity can be significantly improved, providing a new solution for the efficient purification of bio-products.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"303 4","pages":"693 - 711"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00396-025-05375-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The performance of chromatographic media affects the efficiency of purification. In this study, based on a T-type microfluidic droplet generation system, agarose microspheres with large pore size and high load were prepared by adjusting the viscosity of a 4% agarose solution to 70 mPa·s at high temperature. Optical microscopy revealed that the self-made agarose microspheres had a good spherical structure with an average particle size of 82.81 μm and a CV value of 0.0576. Subsequently, the stability and mechanical strength of the self-made agarose microspheres were improved by cross-linking and activation with epichlorohydrin. After the cross-linking and activation, the agarose microspheres were grafted with Protein A to make it have specific adsorption capacity for IgG. The adsorption capacity of the self-made agarose microspheres grafted with Protein A for IgG was 87 mg/g. In the complex serum environment, the agarose microspheres grafted with Protein A still maintained good IgG adsorption capacity and selectivity, demonstrating their potential in practical applications. This study demonstrates the great potential of microfluidic technology in the design and preparation of bio-separation media. By precisely controlling the particle size and pore size of the microspheres, the purification efficiency and selectivity can be significantly improved, providing a new solution for the efficient purification of bio-products.

Graphical abstract

求助全文
约1分钟内获得全文 求助全文
来源期刊
Colloid and Polymer Science
Colloid and Polymer Science 化学-高分子科学
CiteScore
4.60
自引率
4.20%
发文量
111
审稿时长
2.2 months
期刊介绍: Colloid and Polymer Science - a leading international journal of longstanding tradition - is devoted to colloid and polymer science and its interdisciplinary interactions. As such, it responds to a demand which has lost none of its actuality as revealed in the trends of contemporary materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信