{"title":"Synthesis, characterization, rheological properties of β-cyclodextrin-modified polyacrylamide","authors":"Yinyin Liu, Lei Wang, Guiru Liu, Hongtao Jin, Xiaojuan Lai, Haibin Li, Jiali Chen","doi":"10.1007/s00396-024-05372-6","DOIUrl":null,"url":null,"abstract":"<div><p>X-β-cyclodextrin (β-CD), a vinyl-functionalized monomer, was successfully synthesized through the chemical modification of β-CD. Subsequently, X-β-CD was co-polymerized with acrylic acid, acrylamide, and 2-acrylamido-2-methylpropane sulfonic acid via free radical copolymerization to produce a novel hydrophobic inclusion polymer—X-β-HPAM. The structure of X-β-HPAM was characterized using Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, and scanning electron microscopy. Furthermore, its aqueous rheological properties were analyzed through rheometry. The results revealed that at shearing temperatures of 120 °C and 150 °C and a shear rate of 170 s<sup>−1</sup>, the viscosity of a 0.4% X-β-HPAM aqueous solution gradually increased beyond a shear time of 1200 s, indicating the thickening effect of the X-β-CD monomer on the solution at elevated temperatures. Following shearing for 2 h, the residual viscosity stabilized at 62.24 mPa·s, after undergoing a shearing process for a duration of 2 h, the viscosity of a X-β-HPAM salt solution, with a mass fraction of 0.4% and dissolved in a 5% NaCl aqueous solution at a temperature of 150℃, remains consistently stable at the value of 60.04 mPa·s, demonstrating the excellent salt, temperature, and shear resistance of X-β-HPAM. Thus, β-CD-modified polyacrylamide enhances the thermal resistance and shear resistance of fracturing fluids, thereby improving recovery efficiency.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"303 4","pages":"609 - 619"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00396-024-05372-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
X-β-cyclodextrin (β-CD), a vinyl-functionalized monomer, was successfully synthesized through the chemical modification of β-CD. Subsequently, X-β-CD was co-polymerized with acrylic acid, acrylamide, and 2-acrylamido-2-methylpropane sulfonic acid via free radical copolymerization to produce a novel hydrophobic inclusion polymer—X-β-HPAM. The structure of X-β-HPAM was characterized using Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, and scanning electron microscopy. Furthermore, its aqueous rheological properties were analyzed through rheometry. The results revealed that at shearing temperatures of 120 °C and 150 °C and a shear rate of 170 s−1, the viscosity of a 0.4% X-β-HPAM aqueous solution gradually increased beyond a shear time of 1200 s, indicating the thickening effect of the X-β-CD monomer on the solution at elevated temperatures. Following shearing for 2 h, the residual viscosity stabilized at 62.24 mPa·s, after undergoing a shearing process for a duration of 2 h, the viscosity of a X-β-HPAM salt solution, with a mass fraction of 0.4% and dissolved in a 5% NaCl aqueous solution at a temperature of 150℃, remains consistently stable at the value of 60.04 mPa·s, demonstrating the excellent salt, temperature, and shear resistance of X-β-HPAM. Thus, β-CD-modified polyacrylamide enhances the thermal resistance and shear resistance of fracturing fluids, thereby improving recovery efficiency.
期刊介绍:
Colloid and Polymer Science - a leading international journal of longstanding tradition - is devoted to colloid and polymer science and its interdisciplinary interactions. As such, it responds to a demand which has lost none of its actuality as revealed in the trends of contemporary materials science.