Chemoecology最新文献

筛选
英文 中文
Crinoid anthraquinones as kairomones allowing host selection for the symbiotic snapping shrimp Synalpheus stimpsonii 海百合类蒽醌作为kairomon允许共生对虾的寄主选择
IF 1.8 3区 环境科学与生态学
Chemoecology Pub Date : 2022-03-08 DOI: 10.1007/s00049-022-00368-6
Guillaume Caulier, Alexia Lourtie, Lola Brasseur, Jerome Mallefet, Pascal Gerbaux, Patrick Flammang, Igor Eeckhaut
{"title":"Crinoid anthraquinones as kairomones allowing host selection for the symbiotic snapping shrimp Synalpheus stimpsonii","authors":"Guillaume Caulier,&nbsp;Alexia Lourtie,&nbsp;Lola Brasseur,&nbsp;Jerome Mallefet,&nbsp;Pascal Gerbaux,&nbsp;Patrick Flammang,&nbsp;Igor Eeckhaut","doi":"10.1007/s00049-022-00368-6","DOIUrl":"10.1007/s00049-022-00368-6","url":null,"abstract":"<div><p>Quinones are one of the major pigment groups that provide such bright colors to feather stars (Echinodermata, Crinoidea). These secondary metabolites also act as defensive molecules rendering crinoids unpalatable and repellent to other organisms. However, feather stars are usually associated with numerous symbiotic organisms, amongst which the ectocommensal snapping shrimp <i>Synalpheus stimpsonii</i>. We investigated the chemical stimulus allowing host selection in <i>S. stimpsonii</i> through the combination of behavioral tests, chemical extractions, and mass spectrometry analyses. The individuals of <i>S. stimpsonii</i> used in the experiments were sampled around the Great Reef of Toliara (Madagascar) where they are found in association with two crinoid species: <i>Comanthus wahlbergii</i> and <i>Phanogenia distincta</i>. The chemical attractiveness of the two crinoid hosts and a non-host species, <i>Cenometra bella</i>, was tested in an olfactometer. The three crinoids produced attractive kairomones allowing the snapping shrimp to recognize them. Mass spectrometry analyses on purified extracts of <i>P. distincta</i> revealed the presence of three different anthraquinones (rhodoptilometrin, comantherin, and a new crinoid anthraquinone). Compared to the existing literature, this anthraquinonic cocktail is specific to <i>P. distincta</i>. When these extracts were injected in the olfactometer, they triggered similar attracting behavior suggesting that crinoid anthraquinones are kairomones allowing host selection for <i>S. stimpsonii</i>. This hypothesis is also supported by the fact that shrimps were chemically attracted by pure commercial anthraquinones. In addition to their traditional defensive role (allomones), anthraquinones would, therefore, also function as kairomones, maintaining the symbiosis between <i>S. stimpsonii</i> and its crinoid hosts.</p></div>","PeriodicalId":515,"journal":{"name":"Chemoecology","volume":"32 3","pages":"95 - 104"},"PeriodicalIF":1.8,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4349575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Allelochemicals from Thapsia garganica leaves for Lolium perenne L. control: the magic of mixtures 甘薯叶的化感物质对控制黑麦草的作用:混合物的魔力
IF 1.8 3区 环境科学与生态学
Chemoecology Pub Date : 2022-02-11 DOI: 10.1007/s00049-022-00369-5
Ghofrane Jmii, Jesús G. Zorrilla, Rabiaa Haouala
{"title":"Allelochemicals from Thapsia garganica leaves for Lolium perenne L. control: the magic of mixtures","authors":"Ghofrane Jmii,&nbsp;Jesús G. Zorrilla,&nbsp;Rabiaa Haouala","doi":"10.1007/s00049-022-00369-5","DOIUrl":"10.1007/s00049-022-00369-5","url":null,"abstract":"<div><p>Luteolin 7-<i>O</i>-glucoside (<b>1</b>), 10β-acetoxy-8α-butyryloxy-11α-hydroxy-2β-((2-methylbutanoyl)oxy)-1β<i>H</i>,6α<i>H</i>,7α<i>H</i>,11β<i>H</i>-guaian-3-en-12,6-olide (<b>2</b>) and thapsigargin (<b>3)</b> herbicidal activities’ were evaluated in comparison with their binary and tertiary mixtures, against <i>Lolium perenne</i>. These allelochemicals were isolated from <i>Thapsia garganica</i> leaves methanolic extract. Experiments were carried out by irrigation and spray in pot trials. Each compound was tested at the concentration that inhibits 50% of <i>L. perenne</i> root growth (IC<sub>50</sub>). Mixtures were prepared at the total concentration determined to inhibit 50% of weed root growth based upon the IC<sub>50</sub> value for each compound (1000 µM, 154 µM and 300 µM for <b>1</b>, <b>2</b> and <b>3</b>, respectively). The greatest herbicidal effect was observed in tertiary mixtures, followed by binary ones, and single compounds showed the lowest phytotoxicity. Moreover, spray treatment was more effective at inhibiting growth of <i>L. perenne</i>, compared with irrigation. For sprayed binary mixtures, the <b>2</b> and <b>3</b> mixture showed the best inhibitions in shoot (75.79%) and root (91.02%) growth, and fresh weight (89.28%). These values significantly improved those of the most active single compound, <b>1</b> (48.01%, 58.62% and 57.14%, respectively, following spray). On the other hand, compound <b>3</b>, whose structure is related to guaianolide sesquiterpene lactones, was a common constituent of the most active mixtures, suggesting that it plays a more relevant role in the improvement of the phytotoxicity of mixtures. Results obtained for the spray treatment of the tertiary mixture of <b>1</b> (333.33 µM), <b>2</b> (51.33 µM) and <b>3</b> (100 µM) were even more prominent, since weed growth was completely inhibited. After irrigation with a tertiary mixture, the greatest inhibitions in shoot and root growth and fresh weight did not exceed 88.16%, 94% and 90.47%, respectively. The results reported highlight a synergistic behavior of the test allelochemicals which could be applied in the development of bio-herbicides.</p></div>","PeriodicalId":515,"journal":{"name":"Chemoecology","volume":"32 2","pages":"81 - 87"},"PeriodicalIF":1.8,"publicationDate":"2022-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4753953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Transcriptome response of cold-pretreated Pantoea agglomerans KSC03 to exogenous green leaf volatile E-2-hexenal 冷预处理Pantoea agglomerans KSC03对外源绿叶挥发性e -2-己烯醛的转录组响应
IF 1.8 3区 环境科学与生态学
Chemoecology Pub Date : 2022-01-10 DOI: 10.1007/s00049-021-00367-z
Haifeng Sun, Hong Gao, Xinyu Zuo, Guoyin Kai
{"title":"Transcriptome response of cold-pretreated Pantoea agglomerans KSC03 to exogenous green leaf volatile E-2-hexenal","authors":"Haifeng Sun,&nbsp;Hong Gao,&nbsp;Xinyu Zuo,&nbsp;Guoyin Kai","doi":"10.1007/s00049-021-00367-z","DOIUrl":"10.1007/s00049-021-00367-z","url":null,"abstract":"<div><p>Green leaf volatiles (GLVs) are initially formed in the form of aldehydes, and then converted to alcohol and ester forms by the enzymes from plants. However, it remains unclear whether and how plant microbes work with aldehyde GLVs, especially under stressed conditions. Here, transcriptional response of cold-pretreated <i>Pantoea agglomerans</i> KSC03, an endophyte from <i>Astragalus membranaceus</i> var. <i>mongholicus</i> roots to <i>E</i>-2-hexenal was investigated and verified by real-time PCR and GC–MS after the time length of cold pretreatment was optimized. The results revealed that a 12-h cold stress was the most effective for KSC03 to trigger positive response to <i>E</i>-2-hexenal as far as the cell density was concerned. Transcriptome analysis showed that differentially expressed genes induced by <i>E</i>-2-hexenal were enriched in the following pathways: ABC transporter, phosphotransferase system, nitrotoluene degradation, and metabolisms of hexose and butanoate. Amongst, the upregulated transcription of gene3176 and gene4782 encoding <i>N</i>-ethylmaleimide reductase and diacetyl reductase in <i>E</i>-2-hexenal treatment was confirmed by real-time PCR. So did the enhanced production of 2,3-butanediol triggered by <i>E</i>-2-hexenal. Additionally, the transcription of gene3176 and gene4782 and the production of 2,3-butanediol chronologically reached their peaks in the <i>E</i>-2-hexenal-treated cells at the stationary phase. The results also indicated that exogenous <i>E</i>-2-hexanal passed through the cell membrane at the lag/early logarithmic phase and could not be utilized directly. In summary, <i>E</i>-2-hexenal triggers the positive cell response of cold-pretreated KSC03 at the transcriptional and metabolic levels in a time-length dependent manner.</p></div>","PeriodicalId":515,"journal":{"name":"Chemoecology","volume":"32 2","pages":"69 - 79"},"PeriodicalIF":1.8,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4420422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Floral secondary metabolites in context of biotic and abiotic stress factors 生物和非生物胁迫条件下花次生代谢物的研究
IF 1.8 3区 环境科学与生态学
Chemoecology Pub Date : 2021-11-22 DOI: 10.1007/s00049-021-00366-0
Ishita Paul, Mousumi Poddar Sarkar, Pratap Bhanu Singh Bhadoria
{"title":"Floral secondary metabolites in context of biotic and abiotic stress factors","authors":"Ishita Paul,&nbsp;Mousumi Poddar Sarkar,&nbsp;Pratap Bhanu Singh Bhadoria","doi":"10.1007/s00049-021-00366-0","DOIUrl":"10.1007/s00049-021-00366-0","url":null,"abstract":"<div><p>Floral displays constitute signals conveyed to potential pollinators by pigments and fragrance compounds, which are secondary metabolites biosynthesized through a limited number of major metabolic pathways. In recent years, the role of defensive secondary metabolites, targeted to tolerate/resist herbivory, pathogen-borne diseases and other kinds of stress, has become apparent in the context of floral displays. Apart from pigments and volatile compounds, these defensive compounds include alkaloids, specialized molecules such as glucosinolates (in Brassicaceae), and proanthocyanidin phenolics. All these functionally overlapping groups of metabolites vary in floral concentrations under different kinds of environmental conditions as well as due to endogenous regulatory factors, resulting in metabolic and functional synergies or trade-offs according to the physiological status of the flowers. In this review, we discuss such associations among varying secondary metabolites in flowers, and their implications in context of plant stress-response mechanisms.</p></div>","PeriodicalId":515,"journal":{"name":"Chemoecology","volume":"32 2","pages":"49 - 68"},"PeriodicalIF":1.8,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00049-021-00366-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4874525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Synergistic attraction of kleptoparasitic flies, Desmometopa spp. (Diptera: Milichiidae) to two vespid venom volatiles, trans-conophthorin and N-(3-methylbutyl)acetamide 盗寄生蝇(双翅目:绵蝇科)对两种毒液挥发物反式甲虫啉和N-(3-甲基丁基)乙酰胺的协同吸引作用
IF 1.8 3区 环境科学与生态学
Chemoecology Pub Date : 2021-09-30 DOI: 10.1007/s00049-021-00365-1
Qing-He Zhang, Doreen R. Hoover, Darby R. McMillian, Guiji Zhou, Armenak Margaryan, Dewayne O. Welshons, Allen L. Norrbom, Jeffrey R. Aldrich
{"title":"Synergistic attraction of kleptoparasitic flies, Desmometopa spp. (Diptera: Milichiidae) to two vespid venom volatiles, trans-conophthorin and N-(3-methylbutyl)acetamide","authors":"Qing-He Zhang,&nbsp;Doreen R. Hoover,&nbsp;Darby R. McMillian,&nbsp;Guiji Zhou,&nbsp;Armenak Margaryan,&nbsp;Dewayne O. Welshons,&nbsp;Allen L. Norrbom,&nbsp;Jeffrey R. Aldrich","doi":"10.1007/s00049-021-00365-1","DOIUrl":"10.1007/s00049-021-00365-1","url":null,"abstract":"<div><p>Spiroacetals such as <i>E</i>-7-methyl-1,6-dioxaspiro[4,5]decane (<i>trans</i>-conophthorin; <b>tC</b>) and acetamides [predominantly <i>N</i>-(3-methylbutyl)acetamide; <b>N3MBA</b>], are two major groups of volatiles discovered in venoms of many Vespidae. In the course of testing the attractiveness of tC and N3MBA to Vespidae using Rescue<sup>®</sup> Wasp TrapStiks, a significant number of female milichiids, <i>Desmometopa nearctica</i> Sabrosky and <i>D. sordida</i> (Fallén) <b>(</b>Diptera: Milichiidae) were trapped as well. However, the attraction of vespid wasps was not significant at the dosages tested. We found a significant synergistic effect of tC and N3MBA in attracting <i>Desmometopa</i> flies. Both <i>D. nearctica</i> and <i>D. sordida</i> are kleptoparasitic species; and we conclude that females of these two milichiid flies use tC and N3MBA (and likely other volatiles) released from venom glands of the social vespids (yellowjackets, paper wasps and hornets) as kairomones to locate disturbed, injured, or freshly killed insects (vespids and/or their prey) as a protein-rich food source for egg development and production.</p></div>","PeriodicalId":515,"journal":{"name":"Chemoecology","volume":"32 2","pages":"89 - 94"},"PeriodicalIF":1.8,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00049-021-00365-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5171433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fate of carotenoids in the closed living system of gall–gall wasp–parasitoid 类胡萝卜素在瘿蜂-瘿蜂-寄生蜂封闭生活系统中的命运
IF 1.8 3区 环境科学与生态学
Chemoecology Pub Date : 2021-09-21 DOI: 10.1007/s00049-021-00364-2
Evelina I. Nikelshparg, Daniil N. Bratashov, Matvey I. Nikelshparg, Vasily V. Anikin
{"title":"Fate of carotenoids in the closed living system of gall–gall wasp–parasitoid","authors":"Evelina I. Nikelshparg,&nbsp;Daniil N. Bratashov,&nbsp;Matvey I. Nikelshparg,&nbsp;Vasily V. Anikin","doi":"10.1007/s00049-021-00364-2","DOIUrl":"10.1007/s00049-021-00364-2","url":null,"abstract":"<div><p>Carotenoids play multiple roles in insects, including coloration and protection. Most insects can obtain carotenoids only from their diet. Therefore, carotenoids are proposed to reflect trophic chains and lifestyles of insects. We investigated the mini-ecosystem of a gall on a hawkweed <i>Hieracium </i>×<i> robustum</i> induced by the gall wasp <i>Aulacidea hieracii</i> (Hymenoptera: Cynipidae) that is attacked by parasitoid wasp <i>Eurytoma cynipsea</i> (Hymenoptera: Eurytomidae). The parasitoid larvae consume the gall wasp larvae that consume the gall tissues. We employed resonance Raman spectroscopy to trace the fate of carotenoids in living larvae and pupae of these insects. We showed that carotenoid composition in the parasitoid closely corresponds to that of its diet—the gall wasp. On the contrary, carotenoid composition in the gall wasp was independent of that in the gall tissues, and the carotenoid concentration increases as non-feeding larvae mature. Thus, <i>A. hieracii</i> is suggested as a candidate among insects to have the ability to synthesize and modify carotenoids. Our findings give rise to the question of the relevance of using carotenoids as markers of trophic flow in the gall community.</p></div>","PeriodicalId":515,"journal":{"name":"Chemoecology","volume":"32 1","pages":"31 - 40"},"PeriodicalIF":1.8,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4844359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Biogeochemical cycling of nickel and nutrients in a natural high-density stand of the hyperaccumulator Phyllanthus rufuschaneyi in Sabah, Malaysia 马来西亚沙巴州天然高密度超蓄积林中镍和营养物质的生物地球化学循环
IF 1.8 3区 环境科学与生态学
Chemoecology Pub Date : 2021-09-21 DOI: 10.1007/s00049-021-00363-3
Romane Tisserand, Philip Nti Nkrumah, Antony van der Ent, Sukaibin Sumail, Bernhard Zeller, Guillaume Echevarria
{"title":"Biogeochemical cycling of nickel and nutrients in a natural high-density stand of the hyperaccumulator Phyllanthus rufuschaneyi in Sabah, Malaysia","authors":"Romane Tisserand,&nbsp;Philip Nti Nkrumah,&nbsp;Antony van der Ent,&nbsp;Sukaibin Sumail,&nbsp;Bernhard Zeller,&nbsp;Guillaume Echevarria","doi":"10.1007/s00049-021-00363-3","DOIUrl":"10.1007/s00049-021-00363-3","url":null,"abstract":"<div><p>The extend of biogeochemical cycling of nickel (Ni) by tropical hyperaccumulator plants in their native habitat is largely unknown, although these unusual plants are suspected to play a major role in the recycling of this element in ultramafic ecosystems. In this study, we have assessed the biogeochemical cycling of Ni (and other elements, including mineral nutrients) by a tropical Ni hyperaccumulator plant, i.e.,<i> Phyllanthus rufuschaneyi</i>, which is one of the most promising species for tropical Ni agromining. The study site was a young secondary forest in Sabah (Malaysia) where <i>Phyllanthus rufuschaneyi</i> occurs as the dominant species on an ultramafic Cambisol. For 2 years, we monitored a 100-m<sup>2</sup> plot and collected information on weather, biomass increase, soil fertility, water fluxes to the soil and litter fluxes for a wide range of elements, including Ni. The Ni cycle is mainly driven by internal fluxes, notably the degradation and recycling of Ni-rich litter. Over the period of investigation, the Ni litter flux corresponded to the total Ni stock of the litter (5.2 g m<sup>−2</sup> year<sup>−1</sup>). The results further show that Ni turnover varies significantly with the accumulation properties of the plant cover. This points to the major influence of Ni hyperaccumulator plants in building up Ni available stocks in the topsoils, as has also been shown in temperate ultramafic systems. Litterfall and throughfall contribute substantially to the cycling of phosphorus, sulphur and potassium in this ecosystem, with throughfall contributing 2-, 220- and 20-fold higher to the respective nutrient fluxes relative to litterfall. The magnesium:calcium ratio far exceeded 1 in the soil, but was &lt; 1 in the leaves of <i>Phyllanthus rufuschaneyi</i>. The insights from this study should be taken into account when designing tropical agromining operations; as Ni stocks could be more labile than initially thought. The removal of Ni- and nutrients-rich biomass will likely affect available Ni (and major nutrients) for the next cropping seasons, and requires sustainable fertilisation, to be utilized to replenish depleted major nutrients. These findings also have major ecological implications.</p></div>","PeriodicalId":515,"journal":{"name":"Chemoecology","volume":"32 1","pages":"15 - 29"},"PeriodicalIF":1.8,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4839849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Electrophysiological and behavioral activities of sex pheromone and structurally related compounds in lightbrown apple moth, Epiphyas postvittana 浅褐苹果蛾性信息素及其结构相关化合物的电生理和行为活性
IF 1.8 3区 环境科学与生态学
Chemoecology Pub Date : 2021-09-09 DOI: 10.1007/s00049-021-00362-4
Gwang Hyun Roh, Kye Chung Park
{"title":"Electrophysiological and behavioral activities of sex pheromone and structurally related compounds in lightbrown apple moth, Epiphyas postvittana","authors":"Gwang Hyun Roh,&nbsp;Kye Chung Park","doi":"10.1007/s00049-021-00362-4","DOIUrl":"10.1007/s00049-021-00362-4","url":null,"abstract":"<div><p>Species-specific pheromone communication in moths is often achieved by the precise control of the production of a multi-component sex pheromone blend in females and selective perception of pheromone compounds in males. Reproductive isolation mediated by sex pheromone can be enhanced by the sensitive detection of structurally related non-pheromone components that are not used as pheromone in the same species but used as pheromone components in similar species. Here, we identified several unsaturated aliphatic acetates inhibiting the attraction of male moths to conspecific female sex pheromone in the lightbrown apple moth, <i>Epiphyas postvittana</i> (Walker) (Lepidoptera: Tortricidae), through electroantennogram (EAG) and field trapping studies. In EAG screening with 46 pheromone and structurally related compounds, eleven compounds exhibited significant male-specific EAG responses at 1 µg dose. The EAG-active compounds were mainly mono- or di-unsaturated 14-carbon acetates. In subsequent field trapping tests to evaluate the behavioral activities of the EAG-active compounds on male attraction to the binary blend (<i>E</i>11-14:Ac + <i>E</i>9<i>E</i>11-14:Ac) of female sex pheromone of <i>E. postvittana</i>, each of nine compounds (<i>E</i>9-12:Ac, <i>Z</i>9-12:Ac, <i>E</i>9-14:Ac, <i>Z</i>9-14:Ac, Z10-14:Ac, <i>Z</i>11-14:Ac, <i>Z</i>12-14:Ac, <i>Z</i>9<i>E</i>11-14:Ac and <i>Z</i>9<i>E</i>12-14:Ac) displayed clear inhibition of male moths to the sex pheromone blend in a dose-dependent manner. Our findings provide useful information in understanding the pheromone communication system of <i>E. postvittana</i> and related species.</p></div>","PeriodicalId":515,"journal":{"name":"Chemoecology","volume":"32 1","pages":"1 - 13"},"PeriodicalIF":1.8,"publicationDate":"2021-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4407411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Colonial chemical signature of social wasps and their nesting substrates 群居黄蜂及其筑巢基质的群体化学特征
IF 1.8 3区 环境科学与生态学
Chemoecology Pub Date : 2021-08-24 DOI: 10.1007/s00049-021-00361-5
Denise Sguarizi-Antonio, Kamylla Balbuena Michelutti, Eva Ramona Pereira Soares, Nathan Rodrigues Batista, Sidnei Eduardo Lima-Junior, Claudia Andrea Lima Cardoso, Viviana de Oliveira Torres, William Fernando Antonialli-Junior
{"title":"Colonial chemical signature of social wasps and their nesting substrates","authors":"Denise Sguarizi-Antonio,&nbsp;Kamylla Balbuena Michelutti,&nbsp;Eva Ramona Pereira Soares,&nbsp;Nathan Rodrigues Batista,&nbsp;Sidnei Eduardo Lima-Junior,&nbsp;Claudia Andrea Lima Cardoso,&nbsp;Viviana de Oliveira Torres,&nbsp;William Fernando Antonialli-Junior","doi":"10.1007/s00049-021-00361-5","DOIUrl":"10.1007/s00049-021-00361-5","url":null,"abstract":"<div><p>Social wasps build their nests using plant material and can thereby occupy different types of habitats. The organization of their colonies is generally based on complex communication systems that include chemical compounds of the cuticle that are shared with the material of their nests thus contributing to the specific chemical signature of their colony. These compounds can vary by environmental factors, in this case the nesting substrate may interfere with this composition. However, no study to date has investigated whether there is any relationship between the chemical signature of the colony and the nesting substrate of their nests. Therefore, in this study we investigated the relationship between the colonial chemical signature and the plant in which the colonies were nesting. Colonies of three species of social wasps and samples of plants where they nested were collected, then extractions of the chemical composition of adult wasps, nest material and plants were performed. The results show that the colonies of social wasps investigated here share their chemical composition with the plants where their nests were built. Our results suggest that the plant can provide the colony with more than just a place with ideal physical conditions and safety, but also compounds that compose the colonial chemical signature.</p></div>","PeriodicalId":515,"journal":{"name":"Chemoecology","volume":"32 1","pages":"41 - 47"},"PeriodicalIF":1.8,"publicationDate":"2021-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00049-021-00361-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4922924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Soybean leaf age and plant stage influence expression of resistance to velvetbean caterpillar and fall armyworm 大豆叶龄和株期影响对蚕豆毛虫和秋粘虫的抗性表达
IF 1.8 3区 环境科学与生态学
Chemoecology Pub Date : 2021-08-14 DOI: 10.1007/s00049-021-00360-6
Bruno H. S. Souza, Eduardo N. Costa, Zulene A. Ribeiro, Bruno Perlatti, Mara C. P. Cruz, Moacir R. Forim, Arlindo L. Boiça Júnior, Michael J. Stout
{"title":"Soybean leaf age and plant stage influence expression of resistance to velvetbean caterpillar and fall armyworm","authors":"Bruno H. S. Souza,&nbsp;Eduardo N. Costa,&nbsp;Zulene A. Ribeiro,&nbsp;Bruno Perlatti,&nbsp;Mara C. P. Cruz,&nbsp;Moacir R. Forim,&nbsp;Arlindo L. Boiça Júnior,&nbsp;Michael J. Stout","doi":"10.1007/s00049-021-00360-6","DOIUrl":"10.1007/s00049-021-00360-6","url":null,"abstract":"<div><p>Numerous species of herbivorous insects are associated with soybeans, including the specialist velvetbean caterpillar (VBC), <i>Anticarsia gemmatalis</i>, and the generalist fall armyworm (FAW), <i>Spodoptera frugiperda</i>. Expression of plant resistance is influenced by factors intrinsic to host plants, such as leaf age and plant stage, which can differentially affect specialist and generalist insects due to varying levels of plant defense and corresponding insect adaptation. In this study, four experiments were carried out to test the hypotheses that levels of antibiosis-resistance to VBC and FAW in the resistant genotype PI 227,687 and susceptible genotype IGRA RA 626 RR are related to leaf age and plant stage of soybean. Furthermore, the concentrations of nutrients and selected flavonoids were quantified to give insights into possible chemical mechanisms underlying the resistance. As results, development of VBC and FAW were negatively affected when larvae fed leaves of the resistant genotype, older leaves from the lower part of plants, or leaves from reproductive-stage soybeans. The effects were partly different for each insect species, and the generalist FAW was more affected by higher resistance levels in the older leaves of soybean than the specialist VBC. Distribution and concentrations of nutrients and flavonoids in soybean in function of leaf age and plant stage may explain the varying levels of antibiosis-resistance to VBC and FAW. These results can benefit developments of specific protocols for screening resistant soybean genotypes and pest management strategies focused in plant parts and growth stages that insect-resistance levels are lowest.</p></div>","PeriodicalId":515,"journal":{"name":"Chemoecology","volume":"31 6","pages":"377 - 390"},"PeriodicalIF":1.8,"publicationDate":"2021-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00049-021-00360-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4561921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信