{"title":"Allelochemicals from Thapsia garganica leaves for Lolium perenne L. control: the magic of mixtures","authors":"Ghofrane Jmii, Jesús G. Zorrilla, Rabiaa Haouala","doi":"10.1007/s00049-022-00369-5","DOIUrl":null,"url":null,"abstract":"<div><p>Luteolin 7-<i>O</i>-glucoside (<b>1</b>), 10β-acetoxy-8α-butyryloxy-11α-hydroxy-2β-((2-methylbutanoyl)oxy)-1β<i>H</i>,6α<i>H</i>,7α<i>H</i>,11β<i>H</i>-guaian-3-en-12,6-olide (<b>2</b>) and thapsigargin (<b>3)</b> herbicidal activities’ were evaluated in comparison with their binary and tertiary mixtures, against <i>Lolium perenne</i>. These allelochemicals were isolated from <i>Thapsia garganica</i> leaves methanolic extract. Experiments were carried out by irrigation and spray in pot trials. Each compound was tested at the concentration that inhibits 50% of <i>L. perenne</i> root growth (IC<sub>50</sub>). Mixtures were prepared at the total concentration determined to inhibit 50% of weed root growth based upon the IC<sub>50</sub> value for each compound (1000 µM, 154 µM and 300 µM for <b>1</b>, <b>2</b> and <b>3</b>, respectively). The greatest herbicidal effect was observed in tertiary mixtures, followed by binary ones, and single compounds showed the lowest phytotoxicity. Moreover, spray treatment was more effective at inhibiting growth of <i>L. perenne</i>, compared with irrigation. For sprayed binary mixtures, the <b>2</b> and <b>3</b> mixture showed the best inhibitions in shoot (75.79%) and root (91.02%) growth, and fresh weight (89.28%). These values significantly improved those of the most active single compound, <b>1</b> (48.01%, 58.62% and 57.14%, respectively, following spray). On the other hand, compound <b>3</b>, whose structure is related to guaianolide sesquiterpene lactones, was a common constituent of the most active mixtures, suggesting that it plays a more relevant role in the improvement of the phytotoxicity of mixtures. Results obtained for the spray treatment of the tertiary mixture of <b>1</b> (333.33 µM), <b>2</b> (51.33 µM) and <b>3</b> (100 µM) were even more prominent, since weed growth was completely inhibited. After irrigation with a tertiary mixture, the greatest inhibitions in shoot and root growth and fresh weight did not exceed 88.16%, 94% and 90.47%, respectively. The results reported highlight a synergistic behavior of the test allelochemicals which could be applied in the development of bio-herbicides.</p></div>","PeriodicalId":515,"journal":{"name":"Chemoecology","volume":"32 2","pages":"81 - 87"},"PeriodicalIF":1.6000,"publicationDate":"2022-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemoecology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s00049-022-00369-5","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Luteolin 7-O-glucoside (1), 10β-acetoxy-8α-butyryloxy-11α-hydroxy-2β-((2-methylbutanoyl)oxy)-1βH,6αH,7αH,11βH-guaian-3-en-12,6-olide (2) and thapsigargin (3) herbicidal activities’ were evaluated in comparison with their binary and tertiary mixtures, against Lolium perenne. These allelochemicals were isolated from Thapsia garganica leaves methanolic extract. Experiments were carried out by irrigation and spray in pot trials. Each compound was tested at the concentration that inhibits 50% of L. perenne root growth (IC50). Mixtures were prepared at the total concentration determined to inhibit 50% of weed root growth based upon the IC50 value for each compound (1000 µM, 154 µM and 300 µM for 1, 2 and 3, respectively). The greatest herbicidal effect was observed in tertiary mixtures, followed by binary ones, and single compounds showed the lowest phytotoxicity. Moreover, spray treatment was more effective at inhibiting growth of L. perenne, compared with irrigation. For sprayed binary mixtures, the 2 and 3 mixture showed the best inhibitions in shoot (75.79%) and root (91.02%) growth, and fresh weight (89.28%). These values significantly improved those of the most active single compound, 1 (48.01%, 58.62% and 57.14%, respectively, following spray). On the other hand, compound 3, whose structure is related to guaianolide sesquiterpene lactones, was a common constituent of the most active mixtures, suggesting that it plays a more relevant role in the improvement of the phytotoxicity of mixtures. Results obtained for the spray treatment of the tertiary mixture of 1 (333.33 µM), 2 (51.33 µM) and 3 (100 µM) were even more prominent, since weed growth was completely inhibited. After irrigation with a tertiary mixture, the greatest inhibitions in shoot and root growth and fresh weight did not exceed 88.16%, 94% and 90.47%, respectively. The results reported highlight a synergistic behavior of the test allelochemicals which could be applied in the development of bio-herbicides.
期刊介绍:
It is the aim of Chemoecology to promote and stimulate basic science in the field of chemical ecology by publishing research papers that integrate evolution and/or ecology and chemistry in an attempt to increase our understanding of the biological significance of natural products. Its scopes cover the evolutionary biology, mechanisms and chemistry of biotic interactions and the evolution and synthesis of the underlying natural products. Manuscripts on the evolution and ecology of trophic relationships, intra- and interspecific communication, competition, and other kinds of chemical communication in all types of organismic interactions will be considered suitable for publication. Ecological studies of trophic interactions will be considered also if they are based on the information of the transmission of natural products (e.g. fatty acids) through the food-chain. Chemoecology further publishes papers that relate to the evolution and ecology of interactions mediated by non-volatile compounds (e.g. adhesive secretions). Mechanistic approaches may include the identification, biosynthesis and metabolism of substances that carry information and the elucidation of receptor- and transduction systems using physiological, biochemical and molecular techniques. Papers describing the structure and functional morphology of organs involved in chemical communication will also be considered.