生物和非生物胁迫条件下花次生代谢物的研究

IF 1.6 3区 环境科学与生态学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ishita Paul, Mousumi Poddar Sarkar, Pratap Bhanu Singh Bhadoria
{"title":"生物和非生物胁迫条件下花次生代谢物的研究","authors":"Ishita Paul,&nbsp;Mousumi Poddar Sarkar,&nbsp;Pratap Bhanu Singh Bhadoria","doi":"10.1007/s00049-021-00366-0","DOIUrl":null,"url":null,"abstract":"<div><p>Floral displays constitute signals conveyed to potential pollinators by pigments and fragrance compounds, which are secondary metabolites biosynthesized through a limited number of major metabolic pathways. In recent years, the role of defensive secondary metabolites, targeted to tolerate/resist herbivory, pathogen-borne diseases and other kinds of stress, has become apparent in the context of floral displays. Apart from pigments and volatile compounds, these defensive compounds include alkaloids, specialized molecules such as glucosinolates (in Brassicaceae), and proanthocyanidin phenolics. All these functionally overlapping groups of metabolites vary in floral concentrations under different kinds of environmental conditions as well as due to endogenous regulatory factors, resulting in metabolic and functional synergies or trade-offs according to the physiological status of the flowers. In this review, we discuss such associations among varying secondary metabolites in flowers, and their implications in context of plant stress-response mechanisms.</p></div>","PeriodicalId":515,"journal":{"name":"Chemoecology","volume":"32 2","pages":"49 - 68"},"PeriodicalIF":1.6000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00049-021-00366-0.pdf","citationCount":"9","resultStr":"{\"title\":\"Floral secondary metabolites in context of biotic and abiotic stress factors\",\"authors\":\"Ishita Paul,&nbsp;Mousumi Poddar Sarkar,&nbsp;Pratap Bhanu Singh Bhadoria\",\"doi\":\"10.1007/s00049-021-00366-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Floral displays constitute signals conveyed to potential pollinators by pigments and fragrance compounds, which are secondary metabolites biosynthesized through a limited number of major metabolic pathways. In recent years, the role of defensive secondary metabolites, targeted to tolerate/resist herbivory, pathogen-borne diseases and other kinds of stress, has become apparent in the context of floral displays. Apart from pigments and volatile compounds, these defensive compounds include alkaloids, specialized molecules such as glucosinolates (in Brassicaceae), and proanthocyanidin phenolics. All these functionally overlapping groups of metabolites vary in floral concentrations under different kinds of environmental conditions as well as due to endogenous regulatory factors, resulting in metabolic and functional synergies or trade-offs according to the physiological status of the flowers. In this review, we discuss such associations among varying secondary metabolites in flowers, and their implications in context of plant stress-response mechanisms.</p></div>\",\"PeriodicalId\":515,\"journal\":{\"name\":\"Chemoecology\",\"volume\":\"32 2\",\"pages\":\"49 - 68\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00049-021-00366-0.pdf\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemoecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00049-021-00366-0\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemoecology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s00049-021-00366-0","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 9

摘要

花展示是由色素和芳香化合物传递给潜在传粉者的信号,它们是通过有限的主要代谢途径生物合成的次生代谢物。近年来,防御性次生代谢物的作用,目标是耐受/抵抗草食性、病原体传播的疾病和其他种类的胁迫,在花卉展示的背景下已经变得明显。除了色素和挥发性化合物外,这些防御性化合物还包括生物碱、硫代葡萄糖苷(在十字花科)和原花青素酚类等特殊分子。所有这些功能重叠的代谢物群在不同的环境条件下以及受内源性调节因子的影响,花的浓度不同,根据花的生理状态产生代谢和功能的协同或权衡。在这篇综述中,我们讨论了花中不同次生代谢物之间的这种关联,以及它们在植物应激反应机制中的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Floral secondary metabolites in context of biotic and abiotic stress factors

Floral displays constitute signals conveyed to potential pollinators by pigments and fragrance compounds, which are secondary metabolites biosynthesized through a limited number of major metabolic pathways. In recent years, the role of defensive secondary metabolites, targeted to tolerate/resist herbivory, pathogen-borne diseases and other kinds of stress, has become apparent in the context of floral displays. Apart from pigments and volatile compounds, these defensive compounds include alkaloids, specialized molecules such as glucosinolates (in Brassicaceae), and proanthocyanidin phenolics. All these functionally overlapping groups of metabolites vary in floral concentrations under different kinds of environmental conditions as well as due to endogenous regulatory factors, resulting in metabolic and functional synergies or trade-offs according to the physiological status of the flowers. In this review, we discuss such associations among varying secondary metabolites in flowers, and their implications in context of plant stress-response mechanisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemoecology
Chemoecology 环境科学-生化与分子生物学
CiteScore
4.20
自引率
0.00%
发文量
11
审稿时长
>36 weeks
期刊介绍: It is the aim of Chemoecology to promote and stimulate basic science in the field of chemical ecology by publishing research papers that integrate evolution and/or ecology and chemistry in an attempt to increase our understanding of the biological significance of natural products. Its scopes cover the evolutionary biology, mechanisms and chemistry of biotic interactions and the evolution and synthesis of the underlying natural products. Manuscripts on the evolution and ecology of trophic relationships, intra- and interspecific communication, competition, and other kinds of chemical communication in all types of organismic interactions will be considered suitable for publication. Ecological studies of trophic interactions will be considered also if they are based on the information of the transmission of natural products (e.g. fatty acids) through the food-chain. Chemoecology further publishes papers that relate to the evolution and ecology of interactions mediated by non-volatile compounds (e.g. adhesive secretions). Mechanistic approaches may include the identification, biosynthesis and metabolism of substances that carry information and the elucidation of receptor- and transduction systems using physiological, biochemical and molecular techniques. Papers describing the structure and functional morphology of organs involved in chemical communication will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信