{"title":"Evidence Mapping Based on Systematic Reviews of Cognitive Behavioral Therapy for Neuropathic Pain.","authors":"Conghui Li, Weiqian Hou, Dongfang Ding, Yujie Yang, Shanshan Gu, Yi Zhu","doi":"10.1155/2023/2680620","DOIUrl":"https://doi.org/10.1155/2023/2680620","url":null,"abstract":"<p><strong>Objective: </strong>This evidence mapping is aimed at identifying, summarizing, and analyzing the available evidence on cognitive behavioral therapy (CBT) for neuropathic pain (NP).</p><p><strong>Methods: </strong>This study was conducted following the methodology of Global Evidence Mapping (GEM). Searches were conducted in PubMed, Embase, the Cochrane Library, and PsycINFO to identify systematic reviews (SRs) with or without meta-analysis published before February 15, 2022. The authors independently assessed eligibility, extracted data, and evaluated the methodological quality of the included SRs using AMSTAR-2. The results were presented in the tables and a bubble plot based on the identified population-intervention-comparison-outcome (PICO) questions.</p><p><strong>Results: </strong>A total of 34 SRs met the eligibility criteria. According to the AMSTAR-2, 2 SRs were rated \"high,\" 2 SRs were rated \"moderate,\" 6 SRs were rated \"low,\" and 24 SRs were rated \"critically low.\" The most common study design utilized to evaluate the efficacy of CBT for NP was the randomized controlled trial. In total, 24 PICOs were identified. Migraine was the most studied population. CBT for NP usually reaches the \"potentially better\" result at follow-up.</p><p><strong>Conclusions: </strong>Evidence mapping is a useful way to present existing evidence. Currently, the existing evidence on CBT for NP is limited. Overall, the methodological quality of the included SRs was low. Further improvements in the methodological quality of SRs and more research on the most efficient CBT formats for NP are recommended in the future.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2023 ","pages":"2680620"},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10041341/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9282454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Deficiency of MicroRNA-23-27-24 Clusters Exhibits the Impairment of Myelination in the Central Nervous System.","authors":"Yuji Tsuchikawa, Naosuke Kamei, Yohei Sanada, Toshio Nakamae, Takahiro Harada, Kazunori Imaizumi, Takayuki Akimoto, Shigeru Miyaki, Nobuo Adachi","doi":"10.1155/2023/8938674","DOIUrl":"https://doi.org/10.1155/2023/8938674","url":null,"abstract":"<p><p>Several microRNAs (miRNAs), including miR-23 and miR-27a have been reportedly involved in regulating myelination in the central nervous system. Although miR-23 and miR-27a form clusters <i>in vivo</i> and the clustered miRNAs are known to perform complementary functions, the role of these miRNA clusters in myelination has not been studied. To investigate the role of miR-23-27-24 clusters in myelination, we generated miR-23-27-24 cluster knockout mice and evaluated myelination in the brain and spinal cord. Our results showed that 10-week-old knockout mice had reduced motor function in the hanging wire test compared to the wild-type mice. At 4 weeks, 10 weeks, and 12 months of age, knockout mice showed reduced myelination compared to wild-type mice. The expression levels of myelin basic protein and myelin proteolipid protein were also significantly lower in the knockout mice compared to the wild-type mice. Although differentiation of oligodendrocyte progenitor cells to oligodendrocytes was not inhibited in the knockout mice, the percentage of oligodendrocytes expressing myelin basic protein was significantly lower in 4-week-old knockout mice than that in wild-type mice. Proteome analysis and western blotting showed increased expression of leucine-zipper-like transcription regulator 1 (LZTR1) and decreased expression of R-RAS and phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2) in the knockout mice. In summary, loss of miR-23-27-24 clusters reduces myelination and compromises motor functions in mice. Further, LZTR1, which regulates R-RAS upstream of the ERK1/2 pathway, a signal that promotes myelination, has been identified as a novel target of the miR-23-27-24 cluster in this study.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2023 ","pages":"8938674"},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10060068/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10016300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retracted: Three Mediating Pathways of Anxiety and Security in the Relationship between Coping Style and Disordered Eating Behaviors among Chinese Female College Students.","authors":"Neural Plasticity","doi":"10.1155/2023/9857506","DOIUrl":"https://doi.org/10.1155/2023/9857506","url":null,"abstract":"<p><p>[This retracts the article DOI: 10.1155/2021/7506754.].</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2023 ","pages":"9857506"},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10482556/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10190488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ming Zeng, Zhongli Wang, Xuting Chen, Meifang Shi, Meihong Zhu, Jingmei Ma, Yunhai Yao, Yao Cui, Hua Wu, Jie Shen, Lingfu Xie, Jianming Fu, Xudong Gu
{"title":"The Effect of Swallowing Action Observation Therapy on Resting fMRI in Stroke Patients with Dysphagia.","authors":"Ming Zeng, Zhongli Wang, Xuting Chen, Meifang Shi, Meihong Zhu, Jingmei Ma, Yunhai Yao, Yao Cui, Hua Wu, Jie Shen, Lingfu Xie, Jianming Fu, Xudong Gu","doi":"10.1155/2023/2382980","DOIUrl":"https://doi.org/10.1155/2023/2382980","url":null,"abstract":"<p><strong>Objective: </strong>Many stroke victims have severe swallowing problems. Previous neuroimaging studies have found that several brain regions scattered in the frontal, temporal, and parietal lobes, such as Brodmann's areas (BA) 6, 21, and 40, are associated with swallowing function. This study sought to investigate changes in swallowing function and resting-state functional magnetic resonance imaging (rs-fMRI) in stroke patients with dysphagia following action observation treatment. It also sought to detect changes in brain regions associated with swallowing in stroke patients.</p><p><strong>Methods: </strong>In this study, 12 healthy controls (HCs) and 12 stroke patients were recruited. Stroke patients were given 4 weeks of action observation therapy. In order to assess the differences in mfALFF values between patients before treatment and HCs, the fractional amplitude of low-frequency fluctuations (fALFF) in three frequency bands (conventional frequency band, slow-4, and slow-5) were calculated for fMRI data. The significant brain regions were selected as regions of interest (ROIs) for subsequent analysis. The mfALFF values were extracted from ROIs of the three groups (patients before and after treatment and HCs) and compared to assess the therapeutic efficacy.</p><p><strong>Results: </strong>In the conventional band, stroke patients before treatment had higher mfALFF in the inferior temporal gyrus and lower mfALFF in the calcarine fissure and surrounding cortex and thalamus compared to HCs. In the slow-4 band, there was no significant difference in related brain regions between stroke patients before treatment and HCs. In the slow-5 band, stroke patients before treatment had higher mfALFF in inferior cerebellum, inferior temporal gyrus, middle frontal gyrus, and lower mfALFF in calcarine fissure and surrounding cortex compared to HCs. We also assessed changes in aberrant brain activity that occurred both before and after action observation therapy. The mfALFF between stroke patients after therapy was closed to HCs in comparison to the patients before treatment.</p><p><strong>Conclusion: </strong>Action observation therapy can affect the excitability of certain brain regions. The changes in brain function brought about by this treatment may help to further understand the potential mechanism of network remodeling of swallowing function.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2023 ","pages":"2382980"},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10147521/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9416333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electroencephalogram-Based Brain Connectivity Analysis in Prolonged Disorders of Consciousness.","authors":"Yuzhang Wu, Zhitao Li, Ruowei Qu, Yangang Wang, Zhongzhen Li, Le Wang, Guangrui Zhao, Keke Feng, Yifeng Cheng, Shaoya Yin","doi":"10.1155/2023/4142053","DOIUrl":"https://doi.org/10.1155/2023/4142053","url":null,"abstract":"<p><strong>Background: </strong>Prolonged disorders of consciousness (pDOC) are common in neurology and place a heavy burden on families and society. This study is aimed at investigating the characteristics of brain connectivity in patients with pDOC based on quantitative EEG (qEEG) and extending a new direction for the evaluation of pDOC.</p><p><strong>Methods: </strong>Participants were divided into a control group (CG) and a DOC group by the presence or absence of pDOC. Participants underwent magnetic resonance imaging (MRI) T1 three-dimensional magnetization with a prepared rapid acquisition gradient echo (3D-T1-MPRAGE) sequence, and video EEG data were collected. After calculating the power spectrum by EEG data analysis tool, DTABR ((<i>δ</i> + <i>θ</i>)/(<i>α</i> + <i>β</i>) ratio), Pearson's correlation coefficient (Pearson <i>r</i>), Granger's causality, and phase transfer entropy (PTE), we performed statistical analysis between two groups. Finally, receiver operating characteristic (ROC) curves of connectivity metrics were made.</p><p><strong>Results: </strong>The proportion of power in frontal, central, parietal, and temporal regions in the DOC group was lower than that in the CG. The percentage of delta power in the DOC group was significantly higher than that in the CG, the DTABR in the DOC group was higher than that in the CG, and the value was inverted. The Pearson <i>r</i> of the DOC group was higher than that of CG. The Pearson <i>r</i> of the delta band (<i>Z</i> = -6.71, <i>P</i> < 0.01), theta band (<i>Z</i> = -15.06, <i>P</i> < 0.01), and alpha band (<i>Z</i> = -28.45, <i>P</i> < 0.01) were statistically significant. Granger causality showed that the intensity of directed connections between the two hemispheres in the DOC group at the same threshold was significantly reduced (<i>Z</i> = -82.43, <i>P</i> < 0.01). The PTE of each frequency band in the DOC group was lower than that in the CG. The PTE of the delta band (<i>Z</i> = -42.68, <i>P</i> < 0.01), theta band (<i>Z</i> = -56.79, <i>P</i> < 0.01), the alpha band (<i>Z</i> = -35.11, <i>P</i> < 0.01), and beta band (<i>Z</i> = -63.74, <i>P</i> < 0.01) had statistical significance.</p><p><strong>Conclusion: </strong>Brain connectivity analysis based on EEG has the advantages of being noninvasive, convenient, and bedside. The Pearson <i>r</i> of DTABR, delta, theta, and alpha bands, Granger's causality, and PTE of the delta, theta, alpha, and beta bands can be used as biological markers to distinguish between pDOC and healthy people, especially when behavior evaluation is difficult or ambiguous; it can supplement clinical diagnosis.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2023 ","pages":"4142053"},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10129427/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9767917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fabrizio Esposito, Mario Cirillo, Rosa De Micco, Giuseppina Caiazzo, Mattia Siciliano, Andrea G Russo, Caterina Monari, Nicola Coppola, Gioacchino Tedeschi, Alessandro Tessitore
{"title":"Olfactory Loss and Brain Connectivity after COVID-19: Structural Follow-Up at One Year.","authors":"Fabrizio Esposito, Mario Cirillo, Rosa De Micco, Giuseppina Caiazzo, Mattia Siciliano, Andrea G Russo, Caterina Monari, Nicola Coppola, Gioacchino Tedeschi, Alessandro Tessitore","doi":"10.1155/2023/6496539","DOIUrl":"https://doi.org/10.1155/2023/6496539","url":null,"abstract":"<p><p>The structural connectivity from the primary olfactory cortex to the main secondary olfactory areas was previously reported as relatively increased in the medial orbitofrontal cortex in a cohort of 27 recently SARS-CoV-2-infected (COV+) subjects, of which 23/27 had clinically confirmed olfactory loss, compared to 18 control (COV-) normosmic subjects, who were not previously infected. To complement this finding, here we report the outcome of an identical high angular resolution diffusion MRI analysis on follow-up data sets collected in 18/27 COV+ subjects (10 males, mean age ± SD: 38.7 ± 8.1 years) and 10/18 COV- subjects (5 males, mean age ± SD: 33.1 ± 3.6 years) from the previous samples who repeated both the olfactory functional assessment and the MRI examination after ~1 year. By comparing the newly derived subgroups, we observed that the increase in the structural connectivity index of the medial orbitofrontal cortex was not significant at follow-up, despite 10/18 COV+ subjects were still found hyposmic after ~1 year from SARS-CoV-2 infection. We concluded that the relative hyperconnectivity of the olfactory cortex to the medial orbitofrontal cortex could be, at least in some cases, an acute or reversible phenomenon linked to the recent SARS-CoV-2 infection with associated olfactory loss.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2023 ","pages":"6496539"},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10163964/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9944236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yajin Huang, Yaqing Liu, Wenjun Song, Yanjun Liu, Xiaoqian Wang, Juping Han, Jiang Ye, Hongmei Han, Li Wang, Juan Li, Tiancheng Wang
{"title":"Assessment of Cognitive Function with Sleep Spindle Characteristics in Adults with Epilepsy.","authors":"Yajin Huang, Yaqing Liu, Wenjun Song, Yanjun Liu, Xiaoqian Wang, Juping Han, Jiang Ye, Hongmei Han, Li Wang, Juan Li, Tiancheng Wang","doi":"10.1155/2023/7768980","DOIUrl":"https://doi.org/10.1155/2023/7768980","url":null,"abstract":"<p><strong>Objective: </strong>Epilepsy may cause chronic cognitive impairment by disturbing sleep plasticity. Sleep spindles play a crucial role in sleep maintenance and brain plasticity. This study explored the relationship between cognition and spindle characteristics in adult epilepsy.</p><p><strong>Methods: </strong>Participants underwent one-night sleep electroencephalogram recording and neuropsychological tests on the same day. Spindle characteristics during N2 sleep were extracted using a learning-based system for sleep staging and an automated spindle detection algorithm. We investigated the difference between cognitive subgroups in spindle characteristics. Multiple linear regressions were applied to analyze associations between cognition and spindle characteristics.</p><p><strong>Results: </strong>Compared with no/mild cognitive impairment, epilepsy patients who developed severe cognitive impairment had lower sleep spindle density, the differences mainly distributed in central, occipital, parietal, middle temporal, and posterior temporal (<i>P</i> < 0.05), and had relatively long spindle duration in occipital and posterior temporal (<i>P</i> < 0.05). Mini-Mental State Examination (MMSE) was associated with spindle density (pars triangularis of the inferior frontal gyrus (IFGtri): <i>β</i> = 0.253, <i>P</i> = 0.015, and <i>P</i>.adjust = 0.074) and spindle duration (IFGtri: <i>β</i> = -0.262, <i>P</i> = 0.004, and <i>P</i>.adjust = 0.030). Montreal Cognitive Assessment (MoCA) was associated with spindle duration (IFGtri: <i>β</i> = -0.246, <i>P</i> = 0.010, and <i>P</i>.adjust = 0.055). Executive Index Score (MoCA-EIS) was associated with spindle density (IFGtri: <i>β</i> = 0.238, <i>P</i> = 0.019, and <i>P</i>.adjust = 0.087; parietal: <i>β</i> = 0.227, <i>P</i> = 0.017, and <i>P</i>.adjust = 0.082) and spindle duration (parietal: <i>β</i> = -0.230, <i>P</i> = 0.013, and <i>P</i>.adjust = 0.065). Attention Index Score (MoCA-AIS) was associated with spindle duration (IFGtri: <i>β</i> = -0.233, <i>P</i> = 0.017, and <i>P</i>.adjust = 0.081).</p><p><strong>Conclusions: </strong>The findings suggested that the altered spindle activity in epilepsy with severe cognitive impairment, the associations between the global cognitive status of adult epilepsy and spindle characteristics, and specific cognitive domains may relate to spindle characteristics in particular brain regions.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2023 ","pages":"7768980"},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10125769/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9455724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fractalkine/CX3CR1-Dependent Modulation of Synaptic and Network Plasticity in Health and Disease.","authors":"N P Camacho-Hernández, F Peña-Ortega","doi":"10.1155/2023/4637073","DOIUrl":"https://doi.org/10.1155/2023/4637073","url":null,"abstract":"<p><p>CX3CR1 is a G protein-coupled receptor that is expressed exclusively by microglia within the brain parenchyma. The only known physiological CX3CR1 ligand is the chemokine fractalkine (FKN), which is constitutively expressed in neuronal cell membranes and tonically released by them. Through its key role in microglia-neuron communication, the FKN/CX3CR1 axis regulates microglial state, neuronal survival, synaptic plasticity, and a variety of synaptic functions, as well as neuronal excitability via cytokine release modulation, chemotaxis, and phagocytosis. Thus, the absence of CX3CR1 or any failure in the FKN/CX3CR1 axis has been linked to alterations in different brain functions, including changes in synaptic and network plasticity in structures such as the hippocampus, cortex, brainstem, and spinal cord. Since synaptic plasticity is a basic phenomenon in neural circuit integration and adjustment, here, we will review its modulation by the FKN/CX3CR1 axis in diverse brain circuits and its impact on brain function and adaptation in health and disease.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2023 ","pages":"4637073"},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9833910/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9332998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neural PlasticityPub Date : 2022-12-03eCollection Date: 2022-01-01DOI: 10.1155/2022/6509981
Yan Meng, Shengxue Yu, Fang Zhao, Yu Liu, Yue Wang, Siqi Fan, Yuhong Su, Meili Lu, Hongxin Wang
{"title":"Astragaloside IV Alleviates Brain Injury Induced by Hypoxia via the Calpain-1 Signaling Pathway.","authors":"Yan Meng, Shengxue Yu, Fang Zhao, Yu Liu, Yue Wang, Siqi Fan, Yuhong Su, Meili Lu, Hongxin Wang","doi":"10.1155/2022/6509981","DOIUrl":"10.1155/2022/6509981","url":null,"abstract":"<p><p>Long-term hypoxia can induce oxidative stress and apoptosis in hippocampal neurons that can lead to brain injury diseases. Astragaloside IV (AS-IV) is widely used in the antiapoptotic therapy of brain injury diseases. However, its mechanism of action is still not fully understood. In this study, we investigated the effect of AS-IV on hypoxia-induced oxidative stress and apoptosis in hippocampal neurons and explored its possible mechanism. In vivo, mice were placed in a hypoxic circulatory device containing 10% O<sub>2</sub> and gavaged with AS-IV (60 and 120 mg/kg/d) for 4 weeks. In vitro, mouse hippocampal neuronal cells (HT22) were treated with hypoxia (1% O<sub>2</sub>) for 24 hours in the presence or absence of AS-IV, MDL-28170 (calpain-1 inhibitor), or YC-1 (HIF-1<i>α</i> inhibitor). The protective effect of AS-IV on brain injury was further explored by examining calpain-1 knockout mice. The results showed that hypoxia induced damage to hippocampal neurons, impaired spatial learning and memory abilities, and increased oxidative stress and apoptosis. Treatment with AS-IV or calpain-1 knockout improved the damage to hippocampal neurons and spatial learning and memory, attenuated oxidative stress and inhibited cell apoptosis. These changes were verified in HT22 cells. Overexpression of calpain-1 abolished the improvement of AS-IV on apoptosis and oxidative stress. In addition, the effects of AS-IV were accompanied by decreased calpain-1 and HIF-1<i>α</i> expression, and YC-1 showed a similar effect as AS-IV on calpain-1 and caspase-3 expression. In conclusion, this study demonstrates that AS-IV can downregulate the calpain-1/HIF-1<i>α</i>/caspase-3 pathway and inhibit oxidative stress and apoptosis of hippocampal neurons induced by hypoxia, which provides new ideas for studying the antiapoptotic activity of AS-IV.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2022 ","pages":"6509981"},"PeriodicalIF":3.0,"publicationDate":"2022-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9741538/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10415175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neural PlasticityPub Date : 2022-11-21eCollection Date: 2022-01-01DOI: 10.1155/2022/6463355
Lin Shi, Katie Palmer, Haolin Wang, Matthew A Xu-Friedman, Wei Sun
{"title":"Low Intensity Noise Exposure Enhanced Auditory Loudness and Temporal Processing by Increasing Excitability of DCN.","authors":"Lin Shi, Katie Palmer, Haolin Wang, Matthew A Xu-Friedman, Wei Sun","doi":"10.1155/2022/6463355","DOIUrl":"10.1155/2022/6463355","url":null,"abstract":"<p><p>Sound stimulation is generally used for tinnitus and hyperacusis treatment. Recent studies found that long-term noise exposure can change synaptic and firing properties in the central auditory system, which will be detected by the acoustic startle reflex. However, the perceptual consequences of long-term low-intensity sound exposure are indistinct. This study will detect the effects of moderate-level noise exposure (83 dB SPL) on auditory loudness, and temporal processing was evaluated using CBA/CaJ mice. C-Fos staining was used to detect neural activity changes in the central auditory pathway. With two weeks of 83 dB SPL noise exposure (8 hours per day), no persistent threshold shift of the auditory brainstem response (ABR) was identified. On the other hand, noise exposure enhanced the acoustic startle response (ASR) and gap-induced prepulse inhibition significantly (gap-PPI). Low-level noise exposure, according to the findings, can alter temporal acuity. Noise exposure increased the number of c-Fos labeled neurons in the dorsal cochlear nucleus (DCN) and caudal pontine reticular nucleus (PnC) but not at a higher level in the central auditory nuclei. Our results suggested that noise stimulation can change acoustical temporal processing presumably by increasing the excitability of auditory brainstem neurons.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2022 ","pages":"6463355"},"PeriodicalIF":3.1,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9705115/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10772936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}