Neural Plasticity最新文献

筛选
英文 中文
Alterations in Human Hippocampus Subregions across the Lifespan: Reflections on White Matter Structure and Functional Connectivity. 人类海马体亚区在整个生命周期中的变化:对白质结构和功能连接的反思。
IF 3.1 4区 医学
Neural Plasticity Pub Date : 2023-01-01 DOI: 10.1155/2023/7948140
Jianling Tan, Zhongyan Wang, Yi Tang, Yin Tian
{"title":"Alterations in Human Hippocampus Subregions across the Lifespan: Reflections on White Matter Structure and Functional Connectivity.","authors":"Jianling Tan,&nbsp;Zhongyan Wang,&nbsp;Yi Tang,&nbsp;Yin Tian","doi":"10.1155/2023/7948140","DOIUrl":"https://doi.org/10.1155/2023/7948140","url":null,"abstract":"<p><p>During growth and aging, the role of the hippocampus in memory depends on its interactions with related brain regions. Particularly, two subregions, anterior hippocampus (aHipp) and posterior hippocampus (pHipp), play different and critical roles in memory processing. However, age-related changes of hippocampus subregions on structure and function are still unclear. Here, we investigated age-related structural and functional characteristics of 106 participants (7-85 years old) in resting state based on fractional anisotropy (FA) and functional connectivity (FC) in aHipp and pHipp in the lifespan. The correlation between FA and FC was also explored to identify the coupling. Furthermore, the Wechsler Abbreviated Scale of Intelligence (WASI) was used to explore the relationship between cognitive ability and hippocampal changes. Results showed that there was functional separation and integration in aHipp and pHipp, and the number of functional connections in pHipp was more than that in aHipp across the lifespan. The age-related FC changes showed four different trends (U-shaped/inverted U-shaped/linear upward/linear downward). And around the age of 40 was a critical period for transformation. Then, FA analyses indicated that all effects of age on the hippocampal structures were nonlinear, and the white matter integrity of pHipp was higher than that of aHipp. In the functional-structural coupling, we found that the age-related FA of the right aHipp (aHipp.R) was negatively related to the FC. Finally, through the WASI, we found that the age-related FA of the left aHipp (aHipp.L) was positively correlated with verbal IQ (VERB) and vocabulary comprehension (VOCAB.T), the FA of aHipp.R was only positively correlated with VERB, and the FA of the left pHipp (pHipp.L) was only positively correlated with VOCAB.T. These FC and FA results supported that age-related normal memory changes were closely related to the hippocampus subregions. We also provided empirical evidence that memory ability was altered with the hippocampus, and its efficiency tended to decline after age 40.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2023 ","pages":"7948140"},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10072963/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9636885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Cathodal Transcranial Direct Current Stimulation for Lower Limb Subacute Stroke Rehabilitation. 经颅阴极直流电刺激对下肢亚急性脑卒中康复的影响。
IF 3.1 4区 医学
Neural Plasticity Pub Date : 2023-01-01 DOI: 10.1155/2023/1863686
Qian Duan, Wenying Liu, Jinhui Yang, Ben Huang, Jie Shen
{"title":"Effect of Cathodal Transcranial Direct Current Stimulation for Lower Limb Subacute Stroke Rehabilitation.","authors":"Qian Duan,&nbsp;Wenying Liu,&nbsp;Jinhui Yang,&nbsp;Ben Huang,&nbsp;Jie Shen","doi":"10.1155/2023/1863686","DOIUrl":"https://doi.org/10.1155/2023/1863686","url":null,"abstract":"<p><strong>Methods: </strong>A pilot double-blind and randomized clinical trial. Ninety-one subjects with subacute stroke were treated with cathodal/sham stimulation tDCS based on CGR (physiotherapy 40 min/d and occupational therapy 20 min/d) once daily for 20 consecutive working days. Computer-based stratified randomization (1 : 1) was employed by considering age and sex, with concealed assignments in opaque envelopes to ensure no allocation errors after disclosure at the study's end. Patients were evaluated at T0 before treatment, T1 immediately after the posttreatment assessment, and T2 assessment one month after the end of the treatment. The primary outcome index was assessed: lower limb Fugl-Meyer motor score (FMA-LE); secondary endpoints were other gait assessment and relevant stroke scale assessment.</p><p><strong>Results: </strong>Patients in the trial group performed significantly better than the control group in all primary outcome indicators assessed posttreatment T1 and at follow-up T2: FMA-LE outcome indicators between the two groups in T1 (<i>P</i> = 0.032; effect size 1.00, 95% CI: 0.00 to 2.00) and FMA-LE outcome indicators between the two groups in T2 (<i>P</i> = 0.010; effect size 2.00, 95% CI: 1.00 to 3.00).</p><p><strong>Conclusion: </strong>In the current pilot study, ctDCS plus CGR was an effective treatment modality to improve lower limb motor function with subacute stroke. The effectiveness of cathodal tDCS in poststroke lower limb motor dysfunction is inconclusive. Therefore, a large randomized controlled trial is needed to verify its effectiveness.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2023 ","pages":"1863686"},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10239296/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9682801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
White Matter Microstructural Alterations over the Year after Acute Ischemic Stroke in Patients with Baseline Impaired Cognitive Functions. 基线认知功能受损的急性缺血性脑卒中患者脑白质微结构变化
IF 3.1 4区 医学
Neural Plasticity Pub Date : 2023-01-01 DOI: 10.1155/2023/6762225
Bingyuan Wu, Shida Guo, Xiuqin Jia, Zuojun Geng, Qi Yang
{"title":"White Matter Microstructural Alterations over the Year after Acute Ischemic Stroke in Patients with Baseline Impaired Cognitive Functions.","authors":"Bingyuan Wu,&nbsp;Shida Guo,&nbsp;Xiuqin Jia,&nbsp;Zuojun Geng,&nbsp;Qi Yang","doi":"10.1155/2023/6762225","DOIUrl":"https://doi.org/10.1155/2023/6762225","url":null,"abstract":"<p><strong>Background: </strong>The disruption of white matter (WM) integrity is related to poststroke cognitive impairment (PSCI). The exploration of WM integrity alterations in the chronic stage of acute ischemic stroke (AIS) may help to improve the long-term outcomes of PSCI.</p><p><strong>Methods: </strong>Sixty patients showing impaired cognitive functions within 3 days after AIS (baseline) and 25 healthy controls underwent diffusion kurtosis imaging scan and cognitive assessment at baseline and 1 year. Based on the tract-based spatial statistics (TBSS), kurtosis fractional anisotropy (KFA) and mean kurtosis (MK) were compared in WM tracts between the groups.</p><p><strong>Results: </strong>One year after AIS, 25 patients were diagnosed with PSCI and 35 patients with non-cognitive impairment (NCI). Compared with baseline, cognitive performance improved in 54 patients and remained unchanged in 6 patients at 1 year. TBSS analysis showed that there were no significant differences in WM tract integrity between the AIS and control groups at baseline (<i>P</i> > 0.05). Compared with the control group, the KFA and MK in multiple WM tracts in the AIS group decreased significantly at 1 year (<i>P</i> < 0.05). Longitudinal analysis showed that the KFA and MK of multiple WM tracts recorded at 1 year were significantly lower than those recorded at baseline in the AIS, PSCI, and NCI groups (<i>P</i> < 0.05), and PSCI group had a faster degeneration than NCI group (<i>P</i> < 0.05).</p><p><strong>Conclusion: </strong>The finding suggests that the patients with baseline impaired cognitive functions still have WM microstructural damages at 1 year poststroke, even if their cognitive function has improved or returned to normal. Cautions should be taken against the possible negative impact of these changes on long-term cognition.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2023 ","pages":"6762225"},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10348854/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9826716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evidence Mapping Based on Systematic Reviews of Cognitive Behavioral Therapy for Neuropathic Pain. 基于认知行为治疗神经性疼痛系统综述的证据图谱。
IF 3.1 4区 医学
Neural Plasticity Pub Date : 2023-01-01 DOI: 10.1155/2023/2680620
Conghui Li, Weiqian Hou, Dongfang Ding, Yujie Yang, Shanshan Gu, Yi Zhu
{"title":"Evidence Mapping Based on Systematic Reviews of Cognitive Behavioral Therapy for Neuropathic Pain.","authors":"Conghui Li,&nbsp;Weiqian Hou,&nbsp;Dongfang Ding,&nbsp;Yujie Yang,&nbsp;Shanshan Gu,&nbsp;Yi Zhu","doi":"10.1155/2023/2680620","DOIUrl":"https://doi.org/10.1155/2023/2680620","url":null,"abstract":"<p><strong>Objective: </strong>This evidence mapping is aimed at identifying, summarizing, and analyzing the available evidence on cognitive behavioral therapy (CBT) for neuropathic pain (NP).</p><p><strong>Methods: </strong>This study was conducted following the methodology of Global Evidence Mapping (GEM). Searches were conducted in PubMed, Embase, the Cochrane Library, and PsycINFO to identify systematic reviews (SRs) with or without meta-analysis published before February 15, 2022. The authors independently assessed eligibility, extracted data, and evaluated the methodological quality of the included SRs using AMSTAR-2. The results were presented in the tables and a bubble plot based on the identified population-intervention-comparison-outcome (PICO) questions.</p><p><strong>Results: </strong>A total of 34 SRs met the eligibility criteria. According to the AMSTAR-2, 2 SRs were rated \"high,\" 2 SRs were rated \"moderate,\" 6 SRs were rated \"low,\" and 24 SRs were rated \"critically low.\" The most common study design utilized to evaluate the efficacy of CBT for NP was the randomized controlled trial. In total, 24 PICOs were identified. Migraine was the most studied population. CBT for NP usually reaches the \"potentially better\" result at follow-up.</p><p><strong>Conclusions: </strong>Evidence mapping is a useful way to present existing evidence. Currently, the existing evidence on CBT for NP is limited. Overall, the methodological quality of the included SRs was low. Further improvements in the methodological quality of SRs and more research on the most efficient CBT formats for NP are recommended in the future.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2023 ","pages":"2680620"},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10041341/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9282454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deficiency of MicroRNA-23-27-24 Clusters Exhibits the Impairment of Myelination in the Central Nervous System. MicroRNA-23-27-24簇缺乏表现出中枢神经系统髓鞘形成的损伤。
IF 3.1 4区 医学
Neural Plasticity Pub Date : 2023-01-01 DOI: 10.1155/2023/8938674
Yuji Tsuchikawa, Naosuke Kamei, Yohei Sanada, Toshio Nakamae, Takahiro Harada, Kazunori Imaizumi, Takayuki Akimoto, Shigeru Miyaki, Nobuo Adachi
{"title":"Deficiency of MicroRNA-23-27-24 Clusters Exhibits the Impairment of Myelination in the Central Nervous System.","authors":"Yuji Tsuchikawa,&nbsp;Naosuke Kamei,&nbsp;Yohei Sanada,&nbsp;Toshio Nakamae,&nbsp;Takahiro Harada,&nbsp;Kazunori Imaizumi,&nbsp;Takayuki Akimoto,&nbsp;Shigeru Miyaki,&nbsp;Nobuo Adachi","doi":"10.1155/2023/8938674","DOIUrl":"https://doi.org/10.1155/2023/8938674","url":null,"abstract":"<p><p>Several microRNAs (miRNAs), including miR-23 and miR-27a have been reportedly involved in regulating myelination in the central nervous system. Although miR-23 and miR-27a form clusters <i>in vivo</i> and the clustered miRNAs are known to perform complementary functions, the role of these miRNA clusters in myelination has not been studied. To investigate the role of miR-23-27-24 clusters in myelination, we generated miR-23-27-24 cluster knockout mice and evaluated myelination in the brain and spinal cord. Our results showed that 10-week-old knockout mice had reduced motor function in the hanging wire test compared to the wild-type mice. At 4 weeks, 10 weeks, and 12 months of age, knockout mice showed reduced myelination compared to wild-type mice. The expression levels of myelin basic protein and myelin proteolipid protein were also significantly lower in the knockout mice compared to the wild-type mice. Although differentiation of oligodendrocyte progenitor cells to oligodendrocytes was not inhibited in the knockout mice, the percentage of oligodendrocytes expressing myelin basic protein was significantly lower in 4-week-old knockout mice than that in wild-type mice. Proteome analysis and western blotting showed increased expression of leucine-zipper-like transcription regulator 1 (LZTR1) and decreased expression of R-RAS and phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2) in the knockout mice. In summary, loss of miR-23-27-24 clusters reduces myelination and compromises motor functions in mice. Further, LZTR1, which regulates R-RAS upstream of the ERK1/2 pathway, a signal that promotes myelination, has been identified as a novel target of the miR-23-27-24 cluster in this study.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2023 ","pages":"8938674"},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10060068/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10016300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retracted: Three Mediating Pathways of Anxiety and Security in the Relationship between Coping Style and Disordered Eating Behaviors among Chinese Female College Students. 中国女大学生应对方式与饮食失调行为关系中焦虑和安全的三条中介途径
IF 3.1 4区 医学
Neural Plasticity Pub Date : 2023-01-01 DOI: 10.1155/2023/9857506
Neural Plasticity
{"title":"Retracted: Three Mediating Pathways of Anxiety and Security in the Relationship between Coping Style and Disordered Eating Behaviors among Chinese Female College Students.","authors":"Neural Plasticity","doi":"10.1155/2023/9857506","DOIUrl":"https://doi.org/10.1155/2023/9857506","url":null,"abstract":"<p><p>[This retracts the article DOI: 10.1155/2021/7506754.].</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2023 ","pages":"9857506"},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10482556/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10190488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Effect of Swallowing Action Observation Therapy on Resting fMRI in Stroke Patients with Dysphagia. 吞咽动作观察疗法对脑卒中伴吞咽困难患者静息fMRI的影响。
IF 3.1 4区 医学
Neural Plasticity Pub Date : 2023-01-01 DOI: 10.1155/2023/2382980
Ming Zeng, Zhongli Wang, Xuting Chen, Meifang Shi, Meihong Zhu, Jingmei Ma, Yunhai Yao, Yao Cui, Hua Wu, Jie Shen, Lingfu Xie, Jianming Fu, Xudong Gu
{"title":"The Effect of Swallowing Action Observation Therapy on Resting fMRI in Stroke Patients with Dysphagia.","authors":"Ming Zeng,&nbsp;Zhongli Wang,&nbsp;Xuting Chen,&nbsp;Meifang Shi,&nbsp;Meihong Zhu,&nbsp;Jingmei Ma,&nbsp;Yunhai Yao,&nbsp;Yao Cui,&nbsp;Hua Wu,&nbsp;Jie Shen,&nbsp;Lingfu Xie,&nbsp;Jianming Fu,&nbsp;Xudong Gu","doi":"10.1155/2023/2382980","DOIUrl":"https://doi.org/10.1155/2023/2382980","url":null,"abstract":"<p><strong>Objective: </strong>Many stroke victims have severe swallowing problems. Previous neuroimaging studies have found that several brain regions scattered in the frontal, temporal, and parietal lobes, such as Brodmann's areas (BA) 6, 21, and 40, are associated with swallowing function. This study sought to investigate changes in swallowing function and resting-state functional magnetic resonance imaging (rs-fMRI) in stroke patients with dysphagia following action observation treatment. It also sought to detect changes in brain regions associated with swallowing in stroke patients.</p><p><strong>Methods: </strong>In this study, 12 healthy controls (HCs) and 12 stroke patients were recruited. Stroke patients were given 4 weeks of action observation therapy. In order to assess the differences in mfALFF values between patients before treatment and HCs, the fractional amplitude of low-frequency fluctuations (fALFF) in three frequency bands (conventional frequency band, slow-4, and slow-5) were calculated for fMRI data. The significant brain regions were selected as regions of interest (ROIs) for subsequent analysis. The mfALFF values were extracted from ROIs of the three groups (patients before and after treatment and HCs) and compared to assess the therapeutic efficacy.</p><p><strong>Results: </strong>In the conventional band, stroke patients before treatment had higher mfALFF in the inferior temporal gyrus and lower mfALFF in the calcarine fissure and surrounding cortex and thalamus compared to HCs. In the slow-4 band, there was no significant difference in related brain regions between stroke patients before treatment and HCs. In the slow-5 band, stroke patients before treatment had higher mfALFF in inferior cerebellum, inferior temporal gyrus, middle frontal gyrus, and lower mfALFF in calcarine fissure and surrounding cortex compared to HCs. We also assessed changes in aberrant brain activity that occurred both before and after action observation therapy. The mfALFF between stroke patients after therapy was closed to HCs in comparison to the patients before treatment.</p><p><strong>Conclusion: </strong>Action observation therapy can affect the excitability of certain brain regions. The changes in brain function brought about by this treatment may help to further understand the potential mechanism of network remodeling of swallowing function.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2023 ","pages":"2382980"},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10147521/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9416333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Electroencephalogram-Based Brain Connectivity Analysis in Prolonged Disorders of Consciousness. 基于脑电图的长时间意识障碍脑连通性分析。
IF 3.1 4区 医学
Neural Plasticity Pub Date : 2023-01-01 DOI: 10.1155/2023/4142053
Yuzhang Wu, Zhitao Li, Ruowei Qu, Yangang Wang, Zhongzhen Li, Le Wang, Guangrui Zhao, Keke Feng, Yifeng Cheng, Shaoya Yin
{"title":"Electroencephalogram-Based Brain Connectivity Analysis in Prolonged Disorders of Consciousness.","authors":"Yuzhang Wu,&nbsp;Zhitao Li,&nbsp;Ruowei Qu,&nbsp;Yangang Wang,&nbsp;Zhongzhen Li,&nbsp;Le Wang,&nbsp;Guangrui Zhao,&nbsp;Keke Feng,&nbsp;Yifeng Cheng,&nbsp;Shaoya Yin","doi":"10.1155/2023/4142053","DOIUrl":"https://doi.org/10.1155/2023/4142053","url":null,"abstract":"<p><strong>Background: </strong>Prolonged disorders of consciousness (pDOC) are common in neurology and place a heavy burden on families and society. This study is aimed at investigating the characteristics of brain connectivity in patients with pDOC based on quantitative EEG (qEEG) and extending a new direction for the evaluation of pDOC.</p><p><strong>Methods: </strong>Participants were divided into a control group (CG) and a DOC group by the presence or absence of pDOC. Participants underwent magnetic resonance imaging (MRI) T1 three-dimensional magnetization with a prepared rapid acquisition gradient echo (3D-T1-MPRAGE) sequence, and video EEG data were collected. After calculating the power spectrum by EEG data analysis tool, DTABR ((<i>δ</i> + <i>θ</i>)/(<i>α</i> + <i>β</i>) ratio), Pearson's correlation coefficient (Pearson <i>r</i>), Granger's causality, and phase transfer entropy (PTE), we performed statistical analysis between two groups. Finally, receiver operating characteristic (ROC) curves of connectivity metrics were made.</p><p><strong>Results: </strong>The proportion of power in frontal, central, parietal, and temporal regions in the DOC group was lower than that in the CG. The percentage of delta power in the DOC group was significantly higher than that in the CG, the DTABR in the DOC group was higher than that in the CG, and the value was inverted. The Pearson <i>r</i> of the DOC group was higher than that of CG. The Pearson <i>r</i> of the delta band (<i>Z</i> = -6.71, <i>P</i> < 0.01), theta band (<i>Z</i> = -15.06, <i>P</i> < 0.01), and alpha band (<i>Z</i> = -28.45, <i>P</i> < 0.01) were statistically significant. Granger causality showed that the intensity of directed connections between the two hemispheres in the DOC group at the same threshold was significantly reduced (<i>Z</i> = -82.43, <i>P</i> < 0.01). The PTE of each frequency band in the DOC group was lower than that in the CG. The PTE of the delta band (<i>Z</i> = -42.68, <i>P</i> < 0.01), theta band (<i>Z</i> = -56.79, <i>P</i> < 0.01), the alpha band (<i>Z</i> = -35.11, <i>P</i> < 0.01), and beta band (<i>Z</i> = -63.74, <i>P</i> < 0.01) had statistical significance.</p><p><strong>Conclusion: </strong>Brain connectivity analysis based on EEG has the advantages of being noninvasive, convenient, and bedside. The Pearson <i>r</i> of DTABR, delta, theta, and alpha bands, Granger's causality, and PTE of the delta, theta, alpha, and beta bands can be used as biological markers to distinguish between pDOC and healthy people, especially when behavior evaluation is difficult or ambiguous; it can supplement clinical diagnosis.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2023 ","pages":"4142053"},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10129427/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9767917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Olfactory Loss and Brain Connectivity after COVID-19: Structural Follow-Up at One Year. 2019冠状病毒病后嗅觉丧失和大脑连通性:一年的结构随访。
IF 3.1 4区 医学
Neural Plasticity Pub Date : 2023-01-01 DOI: 10.1155/2023/6496539
Fabrizio Esposito, Mario Cirillo, Rosa De Micco, Giuseppina Caiazzo, Mattia Siciliano, Andrea G Russo, Caterina Monari, Nicola Coppola, Gioacchino Tedeschi, Alessandro Tessitore
{"title":"Olfactory Loss and Brain Connectivity after COVID-19: Structural Follow-Up at One Year.","authors":"Fabrizio Esposito,&nbsp;Mario Cirillo,&nbsp;Rosa De Micco,&nbsp;Giuseppina Caiazzo,&nbsp;Mattia Siciliano,&nbsp;Andrea G Russo,&nbsp;Caterina Monari,&nbsp;Nicola Coppola,&nbsp;Gioacchino Tedeschi,&nbsp;Alessandro Tessitore","doi":"10.1155/2023/6496539","DOIUrl":"https://doi.org/10.1155/2023/6496539","url":null,"abstract":"<p><p>The structural connectivity from the primary olfactory cortex to the main secondary olfactory areas was previously reported as relatively increased in the medial orbitofrontal cortex in a cohort of 27 recently SARS-CoV-2-infected (COV+) subjects, of which 23/27 had clinically confirmed olfactory loss, compared to 18 control (COV-) normosmic subjects, who were not previously infected. To complement this finding, here we report the outcome of an identical high angular resolution diffusion MRI analysis on follow-up data sets collected in 18/27 COV+ subjects (10 males, mean age ± SD: 38.7 ± 8.1 years) and 10/18 COV- subjects (5 males, mean age ± SD: 33.1 ± 3.6 years) from the previous samples who repeated both the olfactory functional assessment and the MRI examination after ~1 year. By comparing the newly derived subgroups, we observed that the increase in the structural connectivity index of the medial orbitofrontal cortex was not significant at follow-up, despite 10/18 COV+ subjects were still found hyposmic after ~1 year from SARS-CoV-2 infection. We concluded that the relative hyperconnectivity of the olfactory cortex to the medial orbitofrontal cortex could be, at least in some cases, an acute or reversible phenomenon linked to the recent SARS-CoV-2 infection with associated olfactory loss.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2023 ","pages":"6496539"},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10163964/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9944236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 22
Assessment of Cognitive Function with Sleep Spindle Characteristics in Adults with Epilepsy. 成人癫痫患者认知功能与睡眠纺锤体特征的评估。
IF 3.1 4区 医学
Neural Plasticity Pub Date : 2023-01-01 DOI: 10.1155/2023/7768980
Yajin Huang, Yaqing Liu, Wenjun Song, Yanjun Liu, Xiaoqian Wang, Juping Han, Jiang Ye, Hongmei Han, Li Wang, Juan Li, Tiancheng Wang
{"title":"Assessment of Cognitive Function with Sleep Spindle Characteristics in Adults with Epilepsy.","authors":"Yajin Huang,&nbsp;Yaqing Liu,&nbsp;Wenjun Song,&nbsp;Yanjun Liu,&nbsp;Xiaoqian Wang,&nbsp;Juping Han,&nbsp;Jiang Ye,&nbsp;Hongmei Han,&nbsp;Li Wang,&nbsp;Juan Li,&nbsp;Tiancheng Wang","doi":"10.1155/2023/7768980","DOIUrl":"https://doi.org/10.1155/2023/7768980","url":null,"abstract":"<p><strong>Objective: </strong>Epilepsy may cause chronic cognitive impairment by disturbing sleep plasticity. Sleep spindles play a crucial role in sleep maintenance and brain plasticity. This study explored the relationship between cognition and spindle characteristics in adult epilepsy.</p><p><strong>Methods: </strong>Participants underwent one-night sleep electroencephalogram recording and neuropsychological tests on the same day. Spindle characteristics during N2 sleep were extracted using a learning-based system for sleep staging and an automated spindle detection algorithm. We investigated the difference between cognitive subgroups in spindle characteristics. Multiple linear regressions were applied to analyze associations between cognition and spindle characteristics.</p><p><strong>Results: </strong>Compared with no/mild cognitive impairment, epilepsy patients who developed severe cognitive impairment had lower sleep spindle density, the differences mainly distributed in central, occipital, parietal, middle temporal, and posterior temporal (<i>P</i> < 0.05), and had relatively long spindle duration in occipital and posterior temporal (<i>P</i> < 0.05). Mini-Mental State Examination (MMSE) was associated with spindle density (pars triangularis of the inferior frontal gyrus (IFGtri): <i>β</i> = 0.253, <i>P</i> = 0.015, and <i>P</i>.adjust = 0.074) and spindle duration (IFGtri: <i>β</i> = -0.262, <i>P</i> = 0.004, and <i>P</i>.adjust = 0.030). Montreal Cognitive Assessment (MoCA) was associated with spindle duration (IFGtri: <i>β</i> = -0.246, <i>P</i> = 0.010, and <i>P</i>.adjust = 0.055). Executive Index Score (MoCA-EIS) was associated with spindle density (IFGtri: <i>β</i> = 0.238, <i>P</i> = 0.019, and <i>P</i>.adjust = 0.087; parietal: <i>β</i> = 0.227, <i>P</i> = 0.017, and <i>P</i>.adjust = 0.082) and spindle duration (parietal: <i>β</i> = -0.230, <i>P</i> = 0.013, and <i>P</i>.adjust = 0.065). Attention Index Score (MoCA-AIS) was associated with spindle duration (IFGtri: <i>β</i> = -0.233, <i>P</i> = 0.017, and <i>P</i>.adjust = 0.081).</p><p><strong>Conclusions: </strong>The findings suggested that the altered spindle activity in epilepsy with severe cognitive impairment, the associations between the global cognitive status of adult epilepsy and spindle characteristics, and specific cognitive domains may relate to spindle characteristics in particular brain regions.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2023 ","pages":"7768980"},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10125769/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9455724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信