{"title":"Alterations in Human Hippocampus Subregions across the Lifespan: Reflections on White Matter Structure and Functional Connectivity.","authors":"Jianling Tan, Zhongyan Wang, Yi Tang, Yin Tian","doi":"10.1155/2023/7948140","DOIUrl":null,"url":null,"abstract":"<p><p>During growth and aging, the role of the hippocampus in memory depends on its interactions with related brain regions. Particularly, two subregions, anterior hippocampus (aHipp) and posterior hippocampus (pHipp), play different and critical roles in memory processing. However, age-related changes of hippocampus subregions on structure and function are still unclear. Here, we investigated age-related structural and functional characteristics of 106 participants (7-85 years old) in resting state based on fractional anisotropy (FA) and functional connectivity (FC) in aHipp and pHipp in the lifespan. The correlation between FA and FC was also explored to identify the coupling. Furthermore, the Wechsler Abbreviated Scale of Intelligence (WASI) was used to explore the relationship between cognitive ability and hippocampal changes. Results showed that there was functional separation and integration in aHipp and pHipp, and the number of functional connections in pHipp was more than that in aHipp across the lifespan. The age-related FC changes showed four different trends (U-shaped/inverted U-shaped/linear upward/linear downward). And around the age of 40 was a critical period for transformation. Then, FA analyses indicated that all effects of age on the hippocampal structures were nonlinear, and the white matter integrity of pHipp was higher than that of aHipp. In the functional-structural coupling, we found that the age-related FA of the right aHipp (aHipp.R) was negatively related to the FC. Finally, through the WASI, we found that the age-related FA of the left aHipp (aHipp.L) was positively correlated with verbal IQ (VERB) and vocabulary comprehension (VOCAB.T), the FA of aHipp.R was only positively correlated with VERB, and the FA of the left pHipp (pHipp.L) was only positively correlated with VOCAB.T. These FC and FA results supported that age-related normal memory changes were closely related to the hippocampus subregions. We also provided empirical evidence that memory ability was altered with the hippocampus, and its efficiency tended to decline after age 40.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2023 ","pages":"7948140"},"PeriodicalIF":3.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10072963/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Plasticity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2023/7948140","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
During growth and aging, the role of the hippocampus in memory depends on its interactions with related brain regions. Particularly, two subregions, anterior hippocampus (aHipp) and posterior hippocampus (pHipp), play different and critical roles in memory processing. However, age-related changes of hippocampus subregions on structure and function are still unclear. Here, we investigated age-related structural and functional characteristics of 106 participants (7-85 years old) in resting state based on fractional anisotropy (FA) and functional connectivity (FC) in aHipp and pHipp in the lifespan. The correlation between FA and FC was also explored to identify the coupling. Furthermore, the Wechsler Abbreviated Scale of Intelligence (WASI) was used to explore the relationship between cognitive ability and hippocampal changes. Results showed that there was functional separation and integration in aHipp and pHipp, and the number of functional connections in pHipp was more than that in aHipp across the lifespan. The age-related FC changes showed four different trends (U-shaped/inverted U-shaped/linear upward/linear downward). And around the age of 40 was a critical period for transformation. Then, FA analyses indicated that all effects of age on the hippocampal structures were nonlinear, and the white matter integrity of pHipp was higher than that of aHipp. In the functional-structural coupling, we found that the age-related FA of the right aHipp (aHipp.R) was negatively related to the FC. Finally, through the WASI, we found that the age-related FA of the left aHipp (aHipp.L) was positively correlated with verbal IQ (VERB) and vocabulary comprehension (VOCAB.T), the FA of aHipp.R was only positively correlated with VERB, and the FA of the left pHipp (pHipp.L) was only positively correlated with VOCAB.T. These FC and FA results supported that age-related normal memory changes were closely related to the hippocampus subregions. We also provided empirical evidence that memory ability was altered with the hippocampus, and its efficiency tended to decline after age 40.
期刊介绍:
Neural Plasticity is an international, interdisciplinary journal dedicated to the publication of articles related to all aspects of neural plasticity, with special emphasis on its functional significance as reflected in behavior and in psychopathology. Neural Plasticity publishes research and review articles from the entire range of relevant disciplines, including basic neuroscience, behavioral neuroscience, cognitive neuroscience, biological psychology, and biological psychiatry.