Neural PlasticityPub Date : 2024-07-25eCollection Date: 2024-01-01DOI: 10.1155/2024/9946769
Carola Wormuth, Anna Papazoglou, Christina Henseler, Dan Ehninger, Karl Broich, Britta Haenisch, Jürgen Hescheler, Rüdiger Köhling, Marco Weiergräber
{"title":"A Novel Rat Infant Model of Medial Temporal Lobe Epilepsy Reveals New Insight into the Molecular Biology and Epileptogenesis in the Developing Brain.","authors":"Carola Wormuth, Anna Papazoglou, Christina Henseler, Dan Ehninger, Karl Broich, Britta Haenisch, Jürgen Hescheler, Rüdiger Köhling, Marco Weiergräber","doi":"10.1155/2024/9946769","DOIUrl":"10.1155/2024/9946769","url":null,"abstract":"<p><p>Although several adult rat models of medial temporal lobe epilepsy (mTLE) have been described in detail, our knowledge of mTLE epileptogenesis in infant rats is limited. Here, we present a novel infant rat model of mTLE (InfRPil-mTLE) based on a repetitive, triphasic injection regimen consisting of low-dose pilocarpine administrations (180 mg/kg. i.p.) on days 9, 11, and 15 <i>post partum</i> (pp). The model had a survival rate of >80% and exhibited characteristic spontaneous recurrent electrographic seizures (SRES) in both the hippocampus and cortex that persisted into adulthood. Using implantable video-EEG radiotelemetry, we quantified a complex set of seizure parameters that demonstrated the induction of chronic electroencephalographic seizure activity in our InfRPil-mTLE model, which predominated during the dark cycle. We further analyzed selected candidate genes potentially relevant to epileptogenesis using a RT-qPCR approach. Several candidates, such as the low-voltage-activated Ca<sup>2+</sup> channel Ca<sub>v</sub>3.2 and the auxiliary subunits <i>β</i> <sub>1</sub> and <i>β</i> <sub>2</sub>, which were previously reported to be upregulated in the hippocampus of the adult pilocarpine mTLE model, were found to be downregulated (together with Ca<sub>v</sub>2.1, Ca<sub>v</sub>2.3, M<sub>1</sub>, and M<sub>3</sub>) in the hippocampus and cortex of our InfRPil-mTLE model. From a translational point of view, our model could serve as a blueprint for childhood epileptic disorders and further contribute to antiepileptic drug research and development in the future.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2024 ","pages":"9946769"},"PeriodicalIF":3.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300100/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141894872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retracted: Sports Augmented Cognitive Benefits: An fMRI Study of Executive Function with Go/NoGo Task","authors":"N. Plasticity","doi":"10.1155/2023/9867463","DOIUrl":"https://doi.org/10.1155/2023/9867463","url":null,"abstract":"<jats:p />","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"111 50","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138958391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Vasoprotective Effects of Hyperoside against Cerebral Ischemia/Reperfusion Injury in Rats: Activation of Large-Conductance Ca<sup>2+</sup>-Activated K<sup>+</sup> Channels.","authors":"Wen-Ming Hong, Yue-Wu Xie, Meng-Yu Zhao, Tian-Hang Yu, Li-Na Wang, Wan-Yan Xu, Shen Gao, Hua-Bao Cai, Yan Guo, Fang Zhang","doi":"10.1155/2023/5545205","DOIUrl":"10.1155/2023/5545205","url":null,"abstract":"<p><p>Hyperoside (Hyp), a kind of Chinese herbal medicine, exerts multiple therapeutic effects on many diseases. However, the role and mechanisms of Hyp in vascular pathophysiology in ischemic stroke need to be further established. The study aimed to investigate the role of (large-conductance Ca<sup>2+</sup>-activated K<sup>+</sup>) BK channels on the vasoprotection of Hyp against cerebral ischemia and reperfusion (I/R) injury in rats. The concentration gradient of Hyp was pretreated in both the middle cerebral artery occlusion and reperfusion model and oxygen-glucose deprivation/reoxygenation (OGD/R) model of primary vascular smooth muscle cells (VSMCs) in rats. A series of indicators were detected, including neurological deficit score, infarct volume, malondialdehyde (MDA), superoxide dismutase (SOD), cerebral blood flow (CBF), cell viability, membrane potential, and BK channels <i>α</i>- and <i>β</i>1-subunits expression. The results showed that Hyp significantly reduced infarct volume and ameliorated neurological dysfunction in I/R-injured rats. Besides, the effects of I/R-induced reduction of BK channels <i>α</i>- and <i>β</i>1-subunits expression were significantly reversed by Hyp in endothelial-denudated cerebral basilar arteries. Furthermore, the protective effect against I/R-induced increases of MDA and reduction of SOD as well as CBF induced by Hyp was significantly reversed by iberiotoxin (IbTX). In OGD/R-injured VSMCs, downregulated cellular viability and BK channels <i>β</i>1-subunits expression were remarkably reversed by Hyp. However, neither OGD/R nor Hyp affected BK channels <i>α</i>-subunits expression, and Hyp failed to induced hyperpolarization of VSMCs. Moreover, the protective effect against OGD/R-induced reduction of cell viability and SOD level and increases of MDA production induced by Hyp was significantly reversed by IbTX in VSMCs. The study indicates that Hyp has the therapeutic potential to improve vascular outcomes, and the mechanism is associated with suppressing oxidative stress and improving CBF through upregulating BK channels.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2023 ","pages":"5545205"},"PeriodicalIF":3.1,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10442186/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10114876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neural PlasticityPub Date : 2023-05-02eCollection Date: 2023-01-01DOI: 10.1155/2023/1474841
Peng Li, Wenya Huang, Yiping Chen, Muhammad Shahzad Aslam, Wenjing Cheng, Yang Huang, Wenjie Chen, Yanxun Huang, Xinnan Wu, Yining Yan, Junliang Shen, Tao Tong, Shuqiong Huang, Xianjun Meng
{"title":"Acupuncture Alleviates CUMS-Induced Depression-Like Behaviors by Restoring Prefrontal Cortex Neuroplasticity.","authors":"Peng Li, Wenya Huang, Yiping Chen, Muhammad Shahzad Aslam, Wenjing Cheng, Yang Huang, Wenjie Chen, Yanxun Huang, Xinnan Wu, Yining Yan, Junliang Shen, Tao Tong, Shuqiong Huang, Xianjun Meng","doi":"10.1155/2023/1474841","DOIUrl":"10.1155/2023/1474841","url":null,"abstract":"<p><strong>Purpose: </strong>To explore the therapeutic efficiency of acupuncture and the related molecular mechanism of neural plasticity in depression.</p><p><strong>Methods: </strong>Chronic unpredictable mild stress- (CUMS-) induced rats were established for the depression animal model. There were a total of four rat groups, including the control group, the CUMS group, the CUMS+acupuncture group, and the CUMS+fluoxetine group. The acupuncture group and the fluoxetine group were given a 3-week treatment after the modeling intervention. The researcher performed the open-field, elevated plus maze, and sucrose preference tests to evaluate depressive behaviors. The number of nerve cells, dendrites' length, and the prefrontal cortex's spine density were detected using Golgi staining. The prefrontal cortex expression, such as BDNF, PSD95, SYN, and PKMZ protein, was detected using the western blot and RT-PCR.</p><p><strong>Results: </strong>Acupuncture could alleviate depressive-like behaviors and promote the recovery of the neural plasticity functions in the prefrontal cortex, showing the increasing cell numbers, prolonging the length of the dendrites, and enhancing the spine density. The neural plasticity-related proteins in the prefrontal cortex, including BDNF, PSD95, SYN, and PKMZ, were all downregulated in the CUMS-induced group; however, these effects could be partly reversed after being treated by acupuncture and fluoxetine (<i>P</i> < 0.05).</p><p><strong>Conclusion: </strong>Acupuncture can ameliorate depressive-like behaviors by promoting the recovery of neural plasticity functions and neural plasticity-related protein upregulation in the prefrontal cortex of CUMS-induced depressed rats. Our study provides new insights into the antidepressant approach, and further studies are warranted to elucidate the mechanisms of acupuncture involved in depression treatment.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2023 ","pages":"1474841"},"PeriodicalIF":3.1,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10169246/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9573005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Functional Connectivity Changes in the Insular Subregions of Patients with Obstructive Sleep Apnea after 6 Months of Continuous Positive Airway Pressure Treatment.","authors":"Ting Long, Haijun Li, Yongqiang Shu, Kunyao Li, Wei Xie, Yaping Zeng, Ling Huang, Li Zeng, Xiang Liu, Dechang Peng","doi":"10.1155/2023/5598047","DOIUrl":"10.1155/2023/5598047","url":null,"abstract":"<p><p>This study was aimed at investigating the functional connectivity (FC) changes between the insular subregions and whole brain in patients with obstructive sleep apnea (OSA) after 6 months of continuous positive airway pressure (CPAP) treatment and at exploring the relationship between resting-state FC changes and cognitive impairment in OSA patients. Data from 15 patients with OSA before and after 6 months of CPAP treatment were included in this study. The FC between the insular subregions and whole brain was compared between baseline and after 6 months of CPAP treatment in OSA. After 6 months of treatment, OSA patients had increased FC from the right ventral anterior insula to the bilateral superior frontal gyrus and bilateral middle frontal gyrus and increased FC from the left posterior insula to the left middle temporal gyrus and left inferior temporal gyrus. Hyperconnectivity was found from the right posterior insula to the right middle temporal gyrus, bilateral precuneus, and bilateral posterior cingulate cortex, which mainly involved the default mode network. There are changes in functional connectivity patterns between the insular subregions and whole brain in OSA patients after 6 months of CPAP treatment. These changes provide a better understanding of the neuroimaging mechanisms underlying the improvement in cognitive function and emotional impairment in OSA patients and can be used as potential biomarkers for clinical CPAP treatment.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2023 ","pages":"5598047"},"PeriodicalIF":3.0,"publicationDate":"2023-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9974286/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9273912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Intrinsic Brain Functional Activity Abnormalities in Episodic Tension-Type Headache.","authors":"Xiu Yang, DianXuan Guo, Wei Huang, Bing Chen","doi":"10.1155/2023/6560298","DOIUrl":"https://doi.org/10.1155/2023/6560298","url":null,"abstract":"<p><strong>Objective: </strong>The neurobiological basis of episodic tension-type headache (ETTH) remains largely unclear. The aim of the present study was to explore intrinsic brain functional activity alterations in ETTH.</p><p><strong>Methods: </strong>Resting-state functional magnetic resonance imaging (rs-fMRI) data were collected from 32 patients with ETTH and 32 age- and gender-matched healthy controls (HCs). Differences in intrinsic brain functional activity between patients with ETTH and HCs were analyzed utilizing the fractional amplitude of low-frequency fluctuation (fALFF) approach. Correlation analyses were performed to examine the relationship between fALFF alterations and clinical characteristics.</p><p><strong>Results: </strong>Compared to HCs, patients with ETTH exhibited increased fALFF in the right posterior insula and anterior insula and decreased fALFF in the posterior cingulate cortex. Moreover, the fALFF in the right anterior insula was negatively correlated with attack frequency in ETTH.</p><p><strong>Conclusions: </strong>This study highlights alterations in the intrinsic brain functional activity in the insula and posterior cingulate cortex in ETTH that can help us understand its neurobiological underpinnings.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2023 ","pages":"6560298"},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232109/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9928985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anca Badoiu, Smaranda Ioana Mitran, Bogdan Catalin, Tudor Adrian Balseanu, Aurel Popa-Wagner, Florin Liviu Gherghina, Carmen Valeria Albu, Raluca Elena Sandu
{"title":"From Molecule to Patient Rehabilitation: The Impact of Transcranial Direct Current Stimulation and Magnetic Stimulation on Stroke-A Narrative Review.","authors":"Anca Badoiu, Smaranda Ioana Mitran, Bogdan Catalin, Tudor Adrian Balseanu, Aurel Popa-Wagner, Florin Liviu Gherghina, Carmen Valeria Albu, Raluca Elena Sandu","doi":"10.1155/2023/5044065","DOIUrl":"https://doi.org/10.1155/2023/5044065","url":null,"abstract":"<p><p>Stroke is a major health problem worldwide, with numerous health, social, and economic implications for survivors and their families. One simple answer to this problem would be to ensure the best rehabilitation with full social reintegration. As such, a plethora of rehabilitation programs was developed and used by healthcare professionals. Among them, modern techniques such as transcranial magnetic stimulation and transcranial direct current stimulation are being used and seem to bring improvements to poststroke rehabilitation. This success is attributed to their capacity to enhance cellular neuromodulation. This modulation includes the reduction of the inflammatory response, autophagy suppression, antiapoptotic effects, angiogenesis enhancement, alterations in the blood-brain barrier permeability, attenuation of oxidative stress, influence on neurotransmitter metabolism, neurogenesis, and enhanced structural neuroplasticity. The favorable effects have been demonstrated at the cellular level in animal models and are supported by clinical studies. Thus, these methods proved to reduce infarct volumes and to improve motor performance, deglutition, functional independence, and high-order cerebral functions (i.e., aphasia and heminegligence). However, as with every therapeutic method, these techniques can also have limitations. Their regimen of administration, the phase of the stroke at which they are applied, and the patients' characteristics (i.e., genotype and corticospinal integrity) seem to influence the outcome. Thus, no response or even worsening effects were obtained under certain circumstances both in animal stroke model studies and in clinical trials. Overall, weighing up risks and benefits, the new transcranial electrical and magnetic stimulation techniques can represent effective tools with which to improve the patients' recovery after stroke, with minimal to no adverse effects. Here, we discuss their effects and the molecular and cellular events underlying their effects as well as their clinical implications.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2023 ","pages":"5044065"},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9991485/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9273936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pan Meng, Xi Zhang, Dandan Li, Hui Yang, Xiaoyuan Lin, Hongqing Zhao, Ping Li, Yuhong Wang, Xiaoye Wang, Jinwen Ge
{"title":"Leonurine Regulates Hippocampal Nerve Regeneration in Rats with Chronic and Unpredictable Mild Stress by Activating SHH/GLI Signaling Pathway and Restoring Gut Microbiota and Microbial Metabolic Homeostasis.","authors":"Pan Meng, Xi Zhang, Dandan Li, Hui Yang, Xiaoyuan Lin, Hongqing Zhao, Ping Li, Yuhong Wang, Xiaoye Wang, Jinwen Ge","doi":"10.1155/2023/1455634","DOIUrl":"https://doi.org/10.1155/2023/1455634","url":null,"abstract":"<p><p>Depression is a highly prevalent and heterogeneous disorder that requires new strategies to overcome depression. In this study, we aimed to investigate whether leonurine modulated hippocampal nerve regeneration in chronic and unpredictable mild stress (CUMS) rats through the SHH/GLI signaling pathway and restoring gut microbiota and microbial metabolic homeostasis. The CUMS rat model was constructed and treated with leonurine. The body weight of rats was recorded, and a series of tests were performed. Western blot was utilized to measure the expression of BDNF and 5-HT in the hippocampus. Then the expression of SHH, GLI, PTCH, and SMO were measured by qRT-PCR and western blot. The colocalization of BrdU+DCX and BrdU+NeuN was evaluated by IF. 16S rDNA high-throughput sequencing was applied to detect the composition and distribution of gut microbiota. The differential metabolites were analyzed by untargeted metabolomics. The correlation between gut microbiota and microbial metabolites was analyzed by Pearson correlation coefficient. After CUMS modeling, the body weight of rats was decreased, and the expression of BDNF and 5-HT were decreased, while the body weight was recovered, and the expression of BDNF and 5-HT were increased after leonurine treatment. Leonurine reversed the reduction in the colocalization of BrdU+DCX and BrdU+NeuN and the reduction in the levels of SHH, GLI, PTCH, and SMO induced by CUMS modeling. Leonurine also restored gut microbiota and microbial metabolites homeostasis in CUMS rats. Furthermore, <i>Prevotellaceae_Ga6A1_group</i> was negatively correlated with 3-Oxocholic acid, nutriacholic acid, and cholic acid. Collectively, leonurine regulated hippocampal nerve regeneration in CUMS rats by activating the SHH/GLI signaling pathway and restoring gut microbiota and microbial metabolic homeostasis.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2023 ","pages":"1455634"},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9840550/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9285151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electroacupuncture Zusanli (ST36) Relieves Somatic Pain in Colitis Rats by Inhibiting Dorsal Root Ganglion Sympathetic-Sensory Coupling and Neurogenic Inflammation.","authors":"Yi-Li Wang, Hai-Yan Zhu, Xi-Qian Lv, Xing-Ying Ren, Ying-Chun Peng, Jin-Yu Qu, Xue-Fang Shen, Ran Sun, Meng-Lu Xiao, Hong Zhang, Zhao-Hui Chen, Peng Cong","doi":"10.1155/2023/9303419","DOIUrl":"https://doi.org/10.1155/2023/9303419","url":null,"abstract":"<p><p>Referred somatic pain triggered by hyperalgesia is common in patients with inflammatory bowel disease (IBD). It was reported that sprouting of sympathetic nerve fibers into the dorsal root ganglion (DGR) and neurogenic inflammation were related to neuropathic pain, the excitability of neurons, and afferents. The purpose of the study was to explore the potential and mechanism of electroacupuncture (EA) at Zusanli (ST36) for the intervention of colon inflammation and hyperalgesia. Sprague-Dawley (SD) was randomly divided into four groups, including control, model, EA, and sham-EA. Our results showed EA treatment significantly attenuated dextran sulfate sodium- (DSS-) induced colorectal lesions and inflammatory cytokine secretion, such as TNF-<i>α</i>, IL-1<i>β</i>, PGE2, and IL-6. EA also inhibited mechanical and thermal pain hypersensitivities of colitis rats. Importantly, EA effectively abrogated the promotion effect of DSS on ipsilateral lumbar 6 (L6) DRG sympathetic-sensory coupling, manifested as the sprouting of tyrosine hydroxylase- (TH-) positive sympathetic fibers into sensory neurons and colocalization of and calcitonin gene-related peptide (CGRP). Furthermore, EA at Zusanli (ST36) activated neurogenic inflammation, characterized by decreased expression of substance P (SP), hyaluronic acid (HA), bradykinin (BK), and prostacyclin (PGI2) in colitis rat skin tissues corresponding to the L6 DRG. Mechanically, EA treatment reduced the activation of the TRPV1/CGRP, ERK, and TLR4 signaling pathways in L6 DRG of colitis rats. Taken together, we presumed that EA treatment improved colon inflammation and hyperalgesia, potentially by suppressing the sprouting of sympathetic nerve fibers into the L6 DGR and neurogenic inflammation via deactivating the TRPV1/CGRP, ERK, and TLR4 signaling pathways.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2023 ","pages":"9303419"},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9998159/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9650081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}