Reorganization of Dynamic Network in Stroke Patients and Its Potential for Predicting Motor Recovery.

IF 3 4区 医学 Q2 NEUROSCIENCES
Neural Plasticity Pub Date : 2024-12-31 eCollection Date: 2024-01-01 DOI:10.1155/np/9932927
Xiaomin Pang, Longquan Huang, Huahang He, Shaojun Xie, Jinfeng Huang, Xiaorong Ge, Tianqing Zheng, Liren Zhao, Ning Xu, Zhao Zhang
{"title":"Reorganization of Dynamic Network in Stroke Patients and Its Potential for Predicting Motor Recovery.","authors":"Xiaomin Pang, Longquan Huang, Huahang He, Shaojun Xie, Jinfeng Huang, Xiaorong Ge, Tianqing Zheng, Liren Zhao, Ning Xu, Zhao Zhang","doi":"10.1155/np/9932927","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective:</b> The investigation of brain functional network dynamics offers a promising approach to understanding network reorganization poststroke. This study aims to explore the dynamic network configurations associated with motor recovery in stroke patients and assess their predictive potential using multilayer network analysis. <b>Methods:</b> Resting-state functional magnetic resonance imaging data were collected from patients with subacute stroke within 2 weeks of onset and from matched healthy controls (HCs). Group-independent component analysis and a sliding window approach were utilized to construct dynamic functional networks. A multilayer network model was applied to quantify the switching rates of individual nodes, subnetworks, and the global network across the dynamic network. Correlation analyses assessed the relationship between switching rates and motor function recovery, while linear regression models evaluated the predictive potential of global network switching rate on motor recovery outcomes. <b>Results:</b> Stroke patients exhibited a significant increase in the switching rates of specific brain regions, including the medial frontal gyrus, precentral gyrus, inferior parietal lobule, anterior cingulate, superior frontal gyrus, and postcentral gyrus, compared to HCs. Additionally, elevated switching rates were observed in the frontoparietal network, default mode network, cerebellar network, and in the global network. These increased switching rates were positively correlated with baseline Fugl-Meyer assessment (FMA) scores and changes in FMA scores at 90 days poststroke. Importantly, the global network's switching rate emerged as a significant predictor of motor recovery in stroke patients. <b>Conclusions:</b> The reorganization of dynamic network configurations in stroke patients reveals crucial insights into the mechanisms of motor recovery. These findings suggest that metrics of dynamic network reorganization, particularly global network switching rate, may offer a robust predictor of motor recovery.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2024 ","pages":"9932927"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11707127/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Plasticity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/np/9932927","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The investigation of brain functional network dynamics offers a promising approach to understanding network reorganization poststroke. This study aims to explore the dynamic network configurations associated with motor recovery in stroke patients and assess their predictive potential using multilayer network analysis. Methods: Resting-state functional magnetic resonance imaging data were collected from patients with subacute stroke within 2 weeks of onset and from matched healthy controls (HCs). Group-independent component analysis and a sliding window approach were utilized to construct dynamic functional networks. A multilayer network model was applied to quantify the switching rates of individual nodes, subnetworks, and the global network across the dynamic network. Correlation analyses assessed the relationship between switching rates and motor function recovery, while linear regression models evaluated the predictive potential of global network switching rate on motor recovery outcomes. Results: Stroke patients exhibited a significant increase in the switching rates of specific brain regions, including the medial frontal gyrus, precentral gyrus, inferior parietal lobule, anterior cingulate, superior frontal gyrus, and postcentral gyrus, compared to HCs. Additionally, elevated switching rates were observed in the frontoparietal network, default mode network, cerebellar network, and in the global network. These increased switching rates were positively correlated with baseline Fugl-Meyer assessment (FMA) scores and changes in FMA scores at 90 days poststroke. Importantly, the global network's switching rate emerged as a significant predictor of motor recovery in stroke patients. Conclusions: The reorganization of dynamic network configurations in stroke patients reveals crucial insights into the mechanisms of motor recovery. These findings suggest that metrics of dynamic network reorganization, particularly global network switching rate, may offer a robust predictor of motor recovery.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Plasticity
Neural Plasticity NEUROSCIENCES-
CiteScore
6.80
自引率
0.00%
发文量
77
审稿时长
16 weeks
期刊介绍: Neural Plasticity is an international, interdisciplinary journal dedicated to the publication of articles related to all aspects of neural plasticity, with special emphasis on its functional significance as reflected in behavior and in psychopathology. Neural Plasticity publishes research and review articles from the entire range of relevant disciplines, including basic neuroscience, behavioral neuroscience, cognitive neuroscience, biological psychology, and biological psychiatry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信