Fucoxanthin Inhibits the NMDA and AMPA Receptors Through Regulating the Calcium Response on Substantia Gelatinosa Neurons of the Trigeminal Subnucleus Caudalis in Juvenile Mice.

IF 3 4区 医学 Q2 NEUROSCIENCES
Neural Plasticity Pub Date : 2025-01-31 eCollection Date: 2025-01-01 DOI:10.1155/np/2553040
Nhung Ha Thuy Le, Seon Ah Park, Yu Mi Kim, Dong Kuk Ahn, Won Jung, Seong Kyu Han
{"title":"Fucoxanthin Inhibits the NMDA and AMPA Receptors Through Regulating the Calcium Response on Substantia Gelatinosa Neurons of the Trigeminal Subnucleus Caudalis in Juvenile Mice.","authors":"Nhung Ha Thuy Le, Seon Ah Park, Yu Mi Kim, Dong Kuk Ahn, Won Jung, Seong Kyu Han","doi":"10.1155/np/2553040","DOIUrl":null,"url":null,"abstract":"<p><p>Glutamate excitotoxicity is considered as the etiology of stroke and neurodegenerative diseases, namely, Parkinson's disease (PD), Alzheimer's disease (AD), and others. Meanwhile, substantia gelatinosa (SG) neurons of the trigeminal subnucleus caudalis (Vc), a pivotal site in regulating orofacial nociceptive transmission via Aδ and C primary afferent fibers, majorly utilize glutamate as the principal excitatory neurotransmitter. Fucoxanthin (FCX), a carotenoid pigment extracted from brown seaweed, possesses various pharmaceutical properties including neuroprotective effect in multiple neuronal populations. To date, the direct activity of FCX on the SG of the Vc has not been extensively clarified. Consequently, we investigated the effect of FCX on excitatory signaling mediated by ionotropic glutamate receptors (iGluRs), using the patch-clamp technique recorded from SG neurons of the Vc. Here, FCX directly acted on glutamate receptors independent of voltage-gated sodium channel and γ-aminobutyric acid (GABA)<sub>A</sub>/glycine receptors in the voltage-clamp mode. Specifically, the <i>N</i>-methyl-D-aspartic acid (NMDA)- and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-induced responses but not the kainic acid receptor (KAR)-mediated response were suppressed by FCX in standard extracellular solution. Additionally, the inhibitory effect of FCX on NMDA currents was repeatable and concentration-dependent. The FCX blockade of NMDA-mediated excitotoxicity was associated with the modulation of Ca<sup>2+</sup> response without affecting Na<sup>+</sup> ions. The Ca<sup>2+</sup>-dependent fluorescence intensity of brain slice was reduced in the presence of FCX. Notably, FCX significantly attenuated the spontaneous firing activity of SG neurons. Altogether, these results reveal that FCX may protect SG neurons against glutamate excitotoxicity via primarily regulating Ca<sup>2+</sup> response, thereby inhibiting the excitatory signaling induced by NMDA and AMPA receptors (AMPARs).</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2025 ","pages":"2553040"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11824308/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Plasticity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/np/2553040","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Glutamate excitotoxicity is considered as the etiology of stroke and neurodegenerative diseases, namely, Parkinson's disease (PD), Alzheimer's disease (AD), and others. Meanwhile, substantia gelatinosa (SG) neurons of the trigeminal subnucleus caudalis (Vc), a pivotal site in regulating orofacial nociceptive transmission via Aδ and C primary afferent fibers, majorly utilize glutamate as the principal excitatory neurotransmitter. Fucoxanthin (FCX), a carotenoid pigment extracted from brown seaweed, possesses various pharmaceutical properties including neuroprotective effect in multiple neuronal populations. To date, the direct activity of FCX on the SG of the Vc has not been extensively clarified. Consequently, we investigated the effect of FCX on excitatory signaling mediated by ionotropic glutamate receptors (iGluRs), using the patch-clamp technique recorded from SG neurons of the Vc. Here, FCX directly acted on glutamate receptors independent of voltage-gated sodium channel and γ-aminobutyric acid (GABA)A/glycine receptors in the voltage-clamp mode. Specifically, the N-methyl-D-aspartic acid (NMDA)- and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-induced responses but not the kainic acid receptor (KAR)-mediated response were suppressed by FCX in standard extracellular solution. Additionally, the inhibitory effect of FCX on NMDA currents was repeatable and concentration-dependent. The FCX blockade of NMDA-mediated excitotoxicity was associated with the modulation of Ca2+ response without affecting Na+ ions. The Ca2+-dependent fluorescence intensity of brain slice was reduced in the presence of FCX. Notably, FCX significantly attenuated the spontaneous firing activity of SG neurons. Altogether, these results reveal that FCX may protect SG neurons against glutamate excitotoxicity via primarily regulating Ca2+ response, thereby inhibiting the excitatory signaling induced by NMDA and AMPA receptors (AMPARs).

岩藻黄素通过调节幼年小鼠三叉神经尾侧亚核明胶质神经元钙反应抑制NMDA和AMPA受体。
谷氨酸兴奋性毒性被认为是中风和神经退行性疾病,即帕金森病(PD)、阿尔茨海默病(AD)等的病因。同时,三叉神经尾侧亚核(Vc)的明胶质(SG)神经元主要利用谷氨酸作为主要的兴奋性神经递质,是通过a δ和C初级传入纤维调节口面部伤害性传递的关键部位。岩藻黄素(fucocanthin, FCX)是一种从褐藻中提取的类胡萝卜素,具有多种药物特性,包括对多种神经元群体的神经保护作用。迄今为止,FCX对Vc的SG的直接活性尚未得到广泛澄清。因此,我们利用从Vc的SG神经元记录的膜片钳技术,研究了FCX对嗜离子性谷氨酸受体(iGluRs)介导的兴奋性信号传导的影响。在这里,FCX直接作用于谷氨酸受体,而不依赖于电压门控钠通道和γ-氨基丁酸(GABA)A/甘氨酸受体。具体来说,在标准细胞外溶液中,FCX可抑制n -甲基- d -天冬氨酸(NMDA)和α-氨基-3-羟基-5-甲基-4-异恶唑丙酸(AMPA)诱导的反应,而不抑制kainic酸受体(KAR)介导的反应。此外,FCX对NMDA电流的抑制作用具有可重复性和浓度依赖性。FCX阻断nmda介导的兴奋性毒性与Ca2+反应的调节有关,而不影响Na+离子。脑片Ca2+依赖性荧光强度在FCX存在下降低。值得注意的是,FCX显著减弱SG神经元的自发放电活动。总之,这些结果表明,FCX可能主要通过调节Ca2+反应来保护SG神经元免受谷氨酸兴奋性毒性,从而抑制NMDA和AMPA受体(AMPARs)诱导的兴奋性信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Plasticity
Neural Plasticity NEUROSCIENCES-
CiteScore
6.80
自引率
0.00%
发文量
77
审稿时长
16 weeks
期刊介绍: Neural Plasticity is an international, interdisciplinary journal dedicated to the publication of articles related to all aspects of neural plasticity, with special emphasis on its functional significance as reflected in behavior and in psychopathology. Neural Plasticity publishes research and review articles from the entire range of relevant disciplines, including basic neuroscience, behavioral neuroscience, cognitive neuroscience, biological psychology, and biological psychiatry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信