Differential Geometry and its Applications最新文献

筛选
英文 中文
Classification of conformally flat Moebius isoparametric submanifolds in the Euclidean space 欧几里得空间中保形平莫比乌斯等参数子平面的分类
IF 0.6 4区 数学
Differential Geometry and its Applications Pub Date : 2024-11-12 DOI: 10.1016/j.difgeo.2024.102201
M.S.R. Antas
{"title":"Classification of conformally flat Moebius isoparametric submanifolds in the Euclidean space","authors":"M.S.R. Antas","doi":"10.1016/j.difgeo.2024.102201","DOIUrl":"10.1016/j.difgeo.2024.102201","url":null,"abstract":"<div><div>The aim of this article is to classify umbilic-free isometric immersions <span><math><mi>f</mi><mo>:</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span>, <span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span>, of a conformally flat manifold which are Moebius isoparametric.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"97 ","pages":"Article 102201"},"PeriodicalIF":0.6,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Left-invariant pseudo-Riemannian metrics on Lie groups: The null cone 李群上的左变伪黎曼度量:空锥
IF 0.6 4区 数学
Differential Geometry and its Applications Pub Date : 2024-11-12 DOI: 10.1016/j.difgeo.2024.102205
Sigbjørn Hervik
{"title":"Left-invariant pseudo-Riemannian metrics on Lie groups: The null cone","authors":"Sigbjørn Hervik","doi":"10.1016/j.difgeo.2024.102205","DOIUrl":"10.1016/j.difgeo.2024.102205","url":null,"abstract":"<div><div>We study left-invariant pseudo-Riemannian metrics on Lie groups using the moving bracket approach of the corresponding Lie algebra. We focus on metrics where the Lie algebra is in the null cone of the <span><math><mi>G</mi><mo>=</mo><mi>O</mi><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span>-action; i.e., Lie algebras <em>μ</em> where zero is in the closure of the orbits: <span><math><mn>0</mn><mo>∈</mo><mover><mrow><mi>G</mi><mo>⋅</mo><mi>μ</mi></mrow><mo>‾</mo></mover></math></span>. We provide examples of such Lie groups in various signatures and give some general results. For signatures <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span> and <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span> we classify all cases belonging to the null cone. More generally, we show that all nilpotent and completely solvable Lie algebras are in the null cone of some <span><math><mi>O</mi><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span> action. In addition, several examples of non-trivial Levi-decomposable Lie algebras in the null cone are given.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"97 ","pages":"Article 102205"},"PeriodicalIF":0.6,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Singularities of discrete indefinite affine minimal surfaces 离散不定仿射极小曲面的奇点
IF 0.6 4区 数学
Differential Geometry and its Applications Pub Date : 2024-11-12 DOI: 10.1016/j.difgeo.2024.102206
Marcos Craizer
{"title":"Singularities of discrete indefinite affine minimal surfaces","authors":"Marcos Craizer","doi":"10.1016/j.difgeo.2024.102206","DOIUrl":"10.1016/j.difgeo.2024.102206","url":null,"abstract":"<div><div>A smooth affine minimal surface with indefinite metric can be obtained from a pair of smooth non-intersecting spatial curves by Lelieuvre's formulas. These surfaces may present singularities, which are generically cuspidal edges and swallowtails. By discretizing the initial curves, one can obtain by the discrete Lelieuvre's formulas a discrete affine minimal surface with indefinite metric. The aim of this paper is to define the singular edges and vertices of the corresponding discrete asymptotic net in such a way that the most relevant properties of the singular set of the smooth version remain valid.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"97 ","pages":"Article 102206"},"PeriodicalIF":0.6,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mean curvature flows of graphs sliding off to infinity in warped product manifolds 扭曲积流形中滑向无穷远的图的平均曲率流
IF 0.6 4区 数学
Differential Geometry and its Applications Pub Date : 2024-11-12 DOI: 10.1016/j.difgeo.2024.102207
Naotoshi Fujihara
{"title":"Mean curvature flows of graphs sliding off to infinity in warped product manifolds","authors":"Naotoshi Fujihara","doi":"10.1016/j.difgeo.2024.102207","DOIUrl":"10.1016/j.difgeo.2024.102207","url":null,"abstract":"<div><div>We study mean curvature flows in a warped product manifold defined by a closed Riemannian manifold and <span><math><mi>R</mi></math></span>. In such a warped product manifold, we can define the notion of a graph, called a geodesic graph. We prove that the curve shortening flow preserves a geodesic graph for any warping function, and the mean curvature flow of hypersurfaces preserves a geodesic graph for some monotone convex warping functions. In particular, we consider some warping functions that go to zero at infinity, which means that the curves or hypersurfaces go to a point at infinity along the flow. In such a case, we prove the long-time existence of the flow and that the curvature and its higher-order derivatives go to zero along the flow.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"97 ","pages":"Article 102207"},"PeriodicalIF":0.6,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On geodesics in the spaces of constrained curves 关于受约束曲线空间中的大地线
IF 0.6 4区 数学
Differential Geometry and its Applications Pub Date : 2024-11-11 DOI: 10.1016/j.difgeo.2024.102209
Esfandiar Nava-Yazdani
{"title":"On geodesics in the spaces of constrained curves","authors":"Esfandiar Nava-Yazdani","doi":"10.1016/j.difgeo.2024.102209","DOIUrl":"10.1016/j.difgeo.2024.102209","url":null,"abstract":"<div><div>In this work, we study the geodesics of the space of certain geometrically and physically motivated subspaces of the space of immersed curves endowed with a first order Sobolev metric. This includes elastic curves and also an extension of some results on planar concentric circles to surfaces. The work focuses on intrinsic and constructive approaches.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"97 ","pages":"Article 102209"},"PeriodicalIF":0.6,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalized almost-Kähler–Ricci solitons 广义的近凯勒-里奇孤子
IF 0.6 4区 数学
Differential Geometry and its Applications Pub Date : 2024-10-23 DOI: 10.1016/j.difgeo.2024.102193
Michael Albanese , Giuseppe Barbaro , Mehdi Lejmi
{"title":"Generalized almost-Kähler–Ricci solitons","authors":"Michael Albanese ,&nbsp;Giuseppe Barbaro ,&nbsp;Mehdi Lejmi","doi":"10.1016/j.difgeo.2024.102193","DOIUrl":"10.1016/j.difgeo.2024.102193","url":null,"abstract":"<div><div>We generalize Kähler–Ricci solitons to the almost-Kähler setting as the zeros of Inoue's moment map <span><span>[25]</span></span>, and show that their existence is an obstruction to the existence of first-Chern–Einstein almost-Kähler metrics on compact symplectic Fano manifolds. We prove deformation results of such metrics in the 4-dimensional case. Moreover, we study the Lie algebra of holomorphic vector fields on 2<em>n</em>-dimensional compact symplectic Fano manifolds admitting generalized almost-Kähler–Ricci solitons. In particular, we partially extend Matsushima's theorem <span><span>[41]</span></span> to compact first-Chern–Einstein almost-Kähler manifolds.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"97 ","pages":"Article 102193"},"PeriodicalIF":0.6,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142533161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deforming locally convex curves into curves of constant k-order width 将局部凸曲线变形为 k 阶宽度不变的曲线
IF 0.6 4区 数学
Differential Geometry and its Applications Pub Date : 2024-10-22 DOI: 10.1016/j.difgeo.2024.102192
Laiyuan Gao , Horst Martini , Deyan Zhang
{"title":"Deforming locally convex curves into curves of constant k-order width","authors":"Laiyuan Gao ,&nbsp;Horst Martini ,&nbsp;Deyan Zhang","doi":"10.1016/j.difgeo.2024.102192","DOIUrl":"10.1016/j.difgeo.2024.102192","url":null,"abstract":"<div><div>A nonlocal curvature flow is introduced to evolve locally convex curves in the plane. It is proved that this flow with any initial locally convex curve has a global solution, keeping the local convexity and the elastic energy of the evolving curve, and that, as the time goes to infinity, the curve converges to a smooth, locally convex curve of constant <em>k</em>-order width. In particular, the limiting curve is a multiple circle if and only if the initial locally convex curve is <em>k</em>-symmetric.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"97 ","pages":"Article 102192"},"PeriodicalIF":0.6,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142533160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Covariant Schrödinger operator and L2-vanishing property on Riemannian manifolds 黎曼流形上的协变薛定谔算子和 L2- 消失特性
IF 0.6 4区 数学
Differential Geometry and its Applications Pub Date : 2024-09-13 DOI: 10.1016/j.difgeo.2024.102191
Ognjen Milatovic
{"title":"Covariant Schrödinger operator and L2-vanishing property on Riemannian manifolds","authors":"Ognjen Milatovic","doi":"10.1016/j.difgeo.2024.102191","DOIUrl":"10.1016/j.difgeo.2024.102191","url":null,"abstract":"<div><p>Let <em>M</em> be a complete Riemannian manifold satisfying a weighted Poincaré inequality, and let <span><math><mi>E</mi></math></span> be a Hermitian vector bundle over <em>M</em> equipped with a metric covariant derivative ∇. We consider the operator <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>X</mi><mo>,</mo><mi>V</mi></mrow></msub><mo>=</mo><msup><mrow><mi>∇</mi></mrow><mrow><mi>†</mi></mrow></msup><mi>∇</mi><mo>+</mo><msub><mrow><mi>∇</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>+</mo><mi>V</mi></math></span>, where <span><math><msup><mrow><mi>∇</mi></mrow><mrow><mi>†</mi></mrow></msup></math></span> is the formal adjoint of ∇ with respect to the inner product in the space of square-integrable sections of <span><math><mi>E</mi></math></span>, <em>X</em> is a smooth (real) vector field on <em>M</em>, and <em>V</em> is a fiberwise self-adjoint, smooth section of the endomorphism bundle <span><math><mi>End</mi><mspace></mspace><mi>E</mi></math></span>. We give a sufficient condition for the triviality of the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-kernel of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>X</mi><mo>,</mo><mi>V</mi></mrow></msub></math></span>. As a corollary, putting <span><math><mi>X</mi><mo>≡</mo><mn>0</mn></math></span> and working in the setting of a Clifford module equipped with a Clifford connection ∇, we obtain the triviality of the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-kernel of <span><math><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, where <em>D</em> is the Dirac operator corresponding to ∇. In particular, when <span><math><mi>E</mi><mo>=</mo><msubsup><mrow><mi>Λ</mi></mrow><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msubsup><msup><mrow><mi>T</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>M</mi></math></span> and <span><math><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> is the Hodge–deRham Laplacian on (complex-valued) <em>k</em>-forms, we recover some recent vanishing results for <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-harmonic (complex-valued) <em>k</em>-forms.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"97 ","pages":"Article 102191"},"PeriodicalIF":0.6,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142228643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Sasakian statistical structures of constant ϕ-sectional curvature on Sasakian space forms 萨萨基空间形式上恒定ϕ截面曲率的萨萨基统计结构
IF 0.6 4区 数学
Differential Geometry and its Applications Pub Date : 2024-09-12 DOI: 10.1016/j.difgeo.2024.102190
Xinlei Wu, Yanyan Sheng, Liang Zhang
{"title":"The Sasakian statistical structures of constant ϕ-sectional curvature on Sasakian space forms","authors":"Xinlei Wu,&nbsp;Yanyan Sheng,&nbsp;Liang Zhang","doi":"10.1016/j.difgeo.2024.102190","DOIUrl":"10.1016/j.difgeo.2024.102190","url":null,"abstract":"<div><p>In this paper, we investigate the Sasakian statistical structures of constant <em>ϕ</em>-sectional curvature based on Sasakian space forms. We obtain the classification of this kind of Sasakian statistical structures. Our classification results show that the Sasakian statistical structures of constant <em>ϕ</em>-sectional curvature on a Sasakian space form with dimension higher than 3 must be almost-trivial; on a 3-dimensional Sasakian space form, in addition to the almost-trivial Sasakian statistical structure, there exist other Sasakian statistical structures which satisfy the constant <em>ϕ</em>-sectional curvature condition. We also point out that a rigidity result for cosymplectic statistical structures of constant <em>ϕ</em>-sectional curvature on 3-dimensional cosymplectic space forms in <span><span>[11]</span></span> can be improved to the corresponding classification result.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"97 ","pages":"Article 102190"},"PeriodicalIF":0.6,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142173432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nearly half-flat SU(3) structures on S3 × S3 S3 × S3 上的近半平面 SU(3) 结构
IF 0.6 4区 数学
Differential Geometry and its Applications Pub Date : 2024-09-12 DOI: 10.1016/j.difgeo.2024.102187
Ragini Singhal
{"title":"Nearly half-flat SU(3) structures on S3 × S3","authors":"Ragini Singhal","doi":"10.1016/j.difgeo.2024.102187","DOIUrl":"10.1016/j.difgeo.2024.102187","url":null,"abstract":"<div><p>We study the <span><math><mi>SU</mi><mo>(</mo><mn>3</mn><mo>)</mo></math></span>-structure induced on an oriented hypersurface of a 7-dimensional manifold with a nearly parallel <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-structure. Such <span><math><mi>SU</mi><mo>(</mo><mn>3</mn><mo>)</mo></math></span>-structures are called <em>nearly half-flat</em>. We characterise the left invariant nearly half-flat structures on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>×</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. This characterisation then helps us to systematically analyse nearly parallel <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-structures on an interval times <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>×</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"97 ","pages":"Article 102187"},"PeriodicalIF":0.6,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142173423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信