厄米流形中C2域上的强Diederich-Fornæss指标

IF 0.6 4区 数学 Q3 MATHEMATICS
Phillip S. Harrington
{"title":"厄米流形中C2域上的强Diederich-Fornæss指标","authors":"Phillip S. Harrington","doi":"10.1016/j.difgeo.2025.102251","DOIUrl":null,"url":null,"abstract":"<div><div>For a relatively compact Stein domain Ω with <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> boundary in a Hermitian manifold <em>M</em>, we consider the strong Diederich-Fornæss index, denoted <span><math><mi>D</mi><mi>F</mi><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>: the supremum of all exponents <span><math><mn>0</mn><mo>&lt;</mo><mi>η</mi><mo>&lt;</mo><mn>1</mn></math></span> such that eigenvalues of the complex Hessian of <span><math><mo>−</mo><msup><mrow><mo>(</mo><mo>−</mo><mi>ρ</mi><mo>)</mo></mrow><mrow><mi>η</mi></mrow></msup></math></span> are bounded below by some positive multiple of <span><math><msup><mrow><mo>(</mo><mo>−</mo><mi>ρ</mi><mo>)</mo></mrow><mrow><mi>η</mi></mrow></msup></math></span> on Ω for some <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> defining function <em>ρ</em>. We will show that <span><math><mi>D</mi><mi>F</mi><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> is completely characterized by the existence of a Hermitian metric with curvature terms satisfying a certain inequality when restricted to the null-space of the Levi-form.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"99 ","pages":"Article 102251"},"PeriodicalIF":0.6000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The strong Diederich-Fornæss index on C2 domains in Hermitian manifolds\",\"authors\":\"Phillip S. Harrington\",\"doi\":\"10.1016/j.difgeo.2025.102251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a relatively compact Stein domain Ω with <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> boundary in a Hermitian manifold <em>M</em>, we consider the strong Diederich-Fornæss index, denoted <span><math><mi>D</mi><mi>F</mi><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>: the supremum of all exponents <span><math><mn>0</mn><mo>&lt;</mo><mi>η</mi><mo>&lt;</mo><mn>1</mn></math></span> such that eigenvalues of the complex Hessian of <span><math><mo>−</mo><msup><mrow><mo>(</mo><mo>−</mo><mi>ρ</mi><mo>)</mo></mrow><mrow><mi>η</mi></mrow></msup></math></span> are bounded below by some positive multiple of <span><math><msup><mrow><mo>(</mo><mo>−</mo><mi>ρ</mi><mo>)</mo></mrow><mrow><mi>η</mi></mrow></msup></math></span> on Ω for some <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> defining function <em>ρ</em>. We will show that <span><math><mi>D</mi><mi>F</mi><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> is completely characterized by the existence of a Hermitian metric with curvature terms satisfying a certain inequality when restricted to the null-space of the Levi-form.</div></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"99 \",\"pages\":\"Article 102251\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224525000269\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224525000269","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于厄米流形M中具有C2边界的相对紧凑的Stein定域Ω,我们考虑强diederlich - forn æss指标,记为DF(Ω):所有指数0<;η<;1的极值,使得-(−ρ)η的复Hessian的特征值在Ω上被某个C2定义函数ρ的正倍数有界。我们将证明DF(Ω)是完全由曲率项满足一定不等式的厄米度规的存在所表征的,当它被限制在列维形式的零空间中时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The strong Diederich-Fornæss index on C2 domains in Hermitian manifolds
For a relatively compact Stein domain Ω with C2 boundary in a Hermitian manifold M, we consider the strong Diederich-Fornæss index, denoted DF(Ω): the supremum of all exponents 0<η<1 such that eigenvalues of the complex Hessian of (ρ)η are bounded below by some positive multiple of (ρ)η on Ω for some C2 defining function ρ. We will show that DF(Ω) is completely characterized by the existence of a Hermitian metric with curvature terms satisfying a certain inequality when restricted to the null-space of the Levi-form.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信