{"title":"厄米流形中C2域上的强Diederich-Fornæss指标","authors":"Phillip S. Harrington","doi":"10.1016/j.difgeo.2025.102251","DOIUrl":null,"url":null,"abstract":"<div><div>For a relatively compact Stein domain Ω with <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> boundary in a Hermitian manifold <em>M</em>, we consider the strong Diederich-Fornæss index, denoted <span><math><mi>D</mi><mi>F</mi><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>: the supremum of all exponents <span><math><mn>0</mn><mo><</mo><mi>η</mi><mo><</mo><mn>1</mn></math></span> such that eigenvalues of the complex Hessian of <span><math><mo>−</mo><msup><mrow><mo>(</mo><mo>−</mo><mi>ρ</mi><mo>)</mo></mrow><mrow><mi>η</mi></mrow></msup></math></span> are bounded below by some positive multiple of <span><math><msup><mrow><mo>(</mo><mo>−</mo><mi>ρ</mi><mo>)</mo></mrow><mrow><mi>η</mi></mrow></msup></math></span> on Ω for some <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> defining function <em>ρ</em>. We will show that <span><math><mi>D</mi><mi>F</mi><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> is completely characterized by the existence of a Hermitian metric with curvature terms satisfying a certain inequality when restricted to the null-space of the Levi-form.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"99 ","pages":"Article 102251"},"PeriodicalIF":0.6000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The strong Diederich-Fornæss index on C2 domains in Hermitian manifolds\",\"authors\":\"Phillip S. Harrington\",\"doi\":\"10.1016/j.difgeo.2025.102251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a relatively compact Stein domain Ω with <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> boundary in a Hermitian manifold <em>M</em>, we consider the strong Diederich-Fornæss index, denoted <span><math><mi>D</mi><mi>F</mi><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>: the supremum of all exponents <span><math><mn>0</mn><mo><</mo><mi>η</mi><mo><</mo><mn>1</mn></math></span> such that eigenvalues of the complex Hessian of <span><math><mo>−</mo><msup><mrow><mo>(</mo><mo>−</mo><mi>ρ</mi><mo>)</mo></mrow><mrow><mi>η</mi></mrow></msup></math></span> are bounded below by some positive multiple of <span><math><msup><mrow><mo>(</mo><mo>−</mo><mi>ρ</mi><mo>)</mo></mrow><mrow><mi>η</mi></mrow></msup></math></span> on Ω for some <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> defining function <em>ρ</em>. We will show that <span><math><mi>D</mi><mi>F</mi><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> is completely characterized by the existence of a Hermitian metric with curvature terms satisfying a certain inequality when restricted to the null-space of the Levi-form.</div></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"99 \",\"pages\":\"Article 102251\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224525000269\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224525000269","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
The strong Diederich-Fornæss index on C2 domains in Hermitian manifolds
For a relatively compact Stein domain Ω with boundary in a Hermitian manifold M, we consider the strong Diederich-Fornæss index, denoted : the supremum of all exponents such that eigenvalues of the complex Hessian of are bounded below by some positive multiple of on Ω for some defining function ρ. We will show that is completely characterized by the existence of a Hermitian metric with curvature terms satisfying a certain inequality when restricted to the null-space of the Levi-form.
期刊介绍:
Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.