{"title":"Higher-power harmonic maps, instantons and Yang-Mills theory","authors":"Elias Knack, Henrik Naujoks","doi":"10.1016/j.difgeo.2025.102240","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span> and <span><math><mo>(</mo><mi>N</mi><mo>,</mo><mi>h</mi><mo>)</mo></math></span> be two pseudo-Riemannian manifolds. We study field theoretic properties of higher-power harmonic maps (also called <em>r</em>-harmonic maps) <span><math><mi>φ</mi><mo>:</mo><mi>M</mi><mo>→</mo><mi>N</mi></math></span>, which are a natural generalization of standard harmonic maps first introduced by C. Wood. In particular, we discuss the coupled system of higher-power harmonic maps and the Einstein-Hilbert action and prove a sufficient condition for a map to be <em>r</em>-harmonic, which is highly motivated by classical field equations like the harmonic map equation or the Yang-Mills equation. Furthermore, we derive an instanton theory for <em>r</em>-harmonic maps on 2<em>r</em>-dimensional base manifolds and investigate conformal properties of general higher-power harmonic maps. Finally, since the theory of higher-power harmonic maps bears striking similarities with Yang-Mills theory, we provide a comprehensive comparison between the two theories which explains in more detail surprisingly many analogies.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"99 ","pages":"Article 102240"},"PeriodicalIF":0.6000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224525000154","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let and be two pseudo-Riemannian manifolds. We study field theoretic properties of higher-power harmonic maps (also called r-harmonic maps) , which are a natural generalization of standard harmonic maps first introduced by C. Wood. In particular, we discuss the coupled system of higher-power harmonic maps and the Einstein-Hilbert action and prove a sufficient condition for a map to be r-harmonic, which is highly motivated by classical field equations like the harmonic map equation or the Yang-Mills equation. Furthermore, we derive an instanton theory for r-harmonic maps on 2r-dimensional base manifolds and investigate conformal properties of general higher-power harmonic maps. Finally, since the theory of higher-power harmonic maps bears striking similarities with Yang-Mills theory, we provide a comprehensive comparison between the two theories which explains in more detail surprisingly many analogies.
期刊介绍:
Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.