Bour's theorem for helicoidal surfaces with singularities

IF 0.6 4区 数学 Q3 MATHEMATICS
Yuki Hattori , Atsufumi Honda , Tatsuya Morimoto
{"title":"Bour's theorem for helicoidal surfaces with singularities","authors":"Yuki Hattori ,&nbsp;Atsufumi Honda ,&nbsp;Tatsuya Morimoto","doi":"10.1016/j.difgeo.2025.102248","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, by generalizing the techniques of Bour's theorem, we prove that every generic cuspidal edge and, more generally, every generic <em>n</em>-type edge, which is invariant under a helicoidal motion in Euclidean 3-space admits non-trivial isometric deformations. As a corollary, several geometric invariants, such as the limiting normal curvature, the cusp-directional torsion, the higher order cuspidal curvature and the bias, are proved to be extrinsic invariants.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"99 ","pages":"Article 102248"},"PeriodicalIF":0.6000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224525000233","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, by generalizing the techniques of Bour's theorem, we prove that every generic cuspidal edge and, more generally, every generic n-type edge, which is invariant under a helicoidal motion in Euclidean 3-space admits non-trivial isometric deformations. As a corollary, several geometric invariants, such as the limiting normal curvature, the cusp-directional torsion, the higher order cuspidal curvature and the bias, are proved to be extrinsic invariants.
带奇点的螺旋曲面的小时定理
本文通过推广Bour定理的技巧,证明了欧几里得三维空间中在螺旋运动下不变的每一个一般的尖头边,更一般地说,每一个一般的n型边都允许非平凡等距变形。作为推论,证明了极限法向曲率、尖向扭转、高阶尖向曲率和偏置等几何不变量为外在不变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信