The geometric Toda equations for noncompact symmetric spaces

IF 0.6 4区 数学 Q3 MATHEMATICS
Ian McIntosh
{"title":"The geometric Toda equations for noncompact symmetric spaces","authors":"Ian McIntosh","doi":"10.1016/j.difgeo.2025.102249","DOIUrl":null,"url":null,"abstract":"<div><div>This paper has two purposes. The first is to classify all those versions of the Toda equations which govern the existence of <em>τ</em>-primitive harmonic maps from a surface into a homogeneous space <span><math><mi>G</mi><mo>/</mo><mi>T</mi></math></span> for which <em>G</em> is a noncomplex noncompact simple real Lie group, <em>τ</em> is the Coxeter automorphism which Drinfel'd &amp; Sokolov assigned to each affine Dynkin diagram, and <em>T</em> is the compact torus fixed pointwise by <em>τ</em>. Here <em>τ</em> may be either an inner or an outer automorphism. We interpret the Toda equations over a compact Riemann surface Σ as equations for a metric on a holomorphic principal <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>C</mi></mrow></msup></math></span>-bundle <span><math><msup><mrow><mi>Q</mi></mrow><mrow><mi>C</mi></mrow></msup></math></span> over Σ whose Chern connection, when combined with a holomorphic field <em>φ</em>, produces a <em>G</em>-connection which is flat precisely when the Toda equations hold. The second purpose is to establish when stability criteria for the pair <span><math><mo>(</mo><msup><mrow><mi>Q</mi></mrow><mrow><mi>C</mi></mrow></msup><mo>,</mo><mi>φ</mi><mo>)</mo></math></span> can be used to prove the existence of solutions. We classify those real forms of the Toda equations for which this pair is a principal pair and we call these <em>totally noncompact</em> Toda pairs: stability theory then gives algebraic conditions for the existence of solutions. Every solution to the geometric Toda equations has a corresponding <em>G</em>-Higgs bundle. We explain how to construct this <em>G</em>-Higgs bundle directly from the Toda pair and show that Baraglia's cyclic Higgs bundles arise from a very special case of totally noncompact cyclic Toda pairs.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"99 ","pages":"Article 102249"},"PeriodicalIF":0.6000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224525000245","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper has two purposes. The first is to classify all those versions of the Toda equations which govern the existence of τ-primitive harmonic maps from a surface into a homogeneous space G/T for which G is a noncomplex noncompact simple real Lie group, τ is the Coxeter automorphism which Drinfel'd & Sokolov assigned to each affine Dynkin diagram, and T is the compact torus fixed pointwise by τ. Here τ may be either an inner or an outer automorphism. We interpret the Toda equations over a compact Riemann surface Σ as equations for a metric on a holomorphic principal TC-bundle QC over Σ whose Chern connection, when combined with a holomorphic field φ, produces a G-connection which is flat precisely when the Toda equations hold. The second purpose is to establish when stability criteria for the pair (QC,φ) can be used to prove the existence of solutions. We classify those real forms of the Toda equations for which this pair is a principal pair and we call these totally noncompact Toda pairs: stability theory then gives algebraic conditions for the existence of solutions. Every solution to the geometric Toda equations has a corresponding G-Higgs bundle. We explain how to construct this G-Higgs bundle directly from the Toda pair and show that Baraglia's cyclic Higgs bundles arise from a very special case of totally noncompact cyclic Toda pairs.
非紧致对称空间的几何Toda方程
本文有两个目的。第一个是对Toda方程的所有版本进行分类,这些版本控制了从曲面到齐次空间G/T的τ-原始调和映射的存在性,其中G为非复非紧单实李群,τ为Coxeter自同构,其中Drinfel'd &;Sokolov分配给每个仿射动力学图,T是紧化环面,由τ点固定。这里τ可以是内自同构也可以是外自同构。我们将紧致黎曼曲面Σ上的Toda方程解释为Σ上全纯主tc束QC上的度规方程,当其Chern连接与全纯场φ结合时,产生一个g连接,当Toda方程成立时,该连接恰好是平的。第二个目的是确定何时可以用(QC,φ)对的稳定性判据来证明解的存在性。我们对这些实形式的Toda方程进行分类其中这对是主对我们称它们为完全非紧Toda对稳定性理论给出了解存在的代数条件。几何Toda方程的每个解都有对应的g -希格斯束。我们解释了如何直接从Toda对构造g -希格斯束,并证明了Baraglia的循环希格斯束是由一个非常特殊的完全非紧化的循环Toda对产生的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信