多边形的流形退化为线段

IF 0.6 4区 数学 Q3 MATHEMATICS
Manuel A. Espinosa-García , Ahtziri González , Yesenia Villicaña-Molina
{"title":"多边形的流形退化为线段","authors":"Manuel A. Espinosa-García ,&nbsp;Ahtziri González ,&nbsp;Yesenia Villicaña-Molina","doi":"10.1016/j.difgeo.2025.102247","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we study the space <span><math><mi>L</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> of <em>n</em>-gons in the plane degenerated to segments. We prove that this space is a smooth real submanifold of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, and describe its topology in terms of the manifold <span><math><mi>M</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> of <em>n</em>-gons degenerated to segments and with the first vertex at 0. We show that <span><math><mi>M</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> and <span><math><mi>L</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> contain straight lines that form a basis of directions in each one of their tangent spaces, and we compute the geodesic equations in these manifolds. Finally, the quotient of <span><math><mi>L</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> by the diagonal action of the affine complex group and the re-enumeration of the vertices is described.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"99 ","pages":"Article 102247"},"PeriodicalIF":0.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The manifold of polygons degenerated to segments\",\"authors\":\"Manuel A. Espinosa-García ,&nbsp;Ahtziri González ,&nbsp;Yesenia Villicaña-Molina\",\"doi\":\"10.1016/j.difgeo.2025.102247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we study the space <span><math><mi>L</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> of <em>n</em>-gons in the plane degenerated to segments. We prove that this space is a smooth real submanifold of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, and describe its topology in terms of the manifold <span><math><mi>M</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> of <em>n</em>-gons degenerated to segments and with the first vertex at 0. We show that <span><math><mi>M</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> and <span><math><mi>L</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> contain straight lines that form a basis of directions in each one of their tangent spaces, and we compute the geodesic equations in these manifolds. Finally, the quotient of <span><math><mi>L</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> by the diagonal action of the affine complex group and the re-enumeration of the vertices is described.</div></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"99 \",\"pages\":\"Article 102247\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224525000221\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224525000221","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了简并成节平面上n-gon的空间L(n)。我们证明了这个空间是Cn的光滑实子流形,并且用n-gon的流形M(n)描述了它的拓扑结构,该流形退化为线段,第一个顶点为0。我们证明M(n)和L(n)包含直线,这些直线在它们的每个切线空间中构成了方向的基础,并且我们计算了这些流形中的测地线方程。最后,描述了仿射复群对角作用下L(n)的商和顶点的重新枚举。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The manifold of polygons degenerated to segments
In this paper we study the space L(n) of n-gons in the plane degenerated to segments. We prove that this space is a smooth real submanifold of Cn, and describe its topology in terms of the manifold M(n) of n-gons degenerated to segments and with the first vertex at 0. We show that M(n) and L(n) contain straight lines that form a basis of directions in each one of their tangent spaces, and we compute the geodesic equations in these manifolds. Finally, the quotient of L(n) by the diagonal action of the affine complex group and the re-enumeration of the vertices is described.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信