Solitons of the mean curvature flow in S2×R

IF 0.6 4区 数学 Q3 MATHEMATICS
Rafael López , Marian Ioan Munteanu
{"title":"Solitons of the mean curvature flow in S2×R","authors":"Rafael López ,&nbsp;Marian Ioan Munteanu","doi":"10.1016/j.difgeo.2025.102243","DOIUrl":null,"url":null,"abstract":"<div><div>A soliton of the mean curvature flow in the product space <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>×</mo><mi>R</mi></math></span> is a surface whose mean curvature <em>H</em> satisfies the equation <span><math><mi>H</mi><mo>=</mo><mo>〈</mo><mi>N</mi><mo>,</mo><mi>X</mi><mo>〉</mo></math></span>, where <em>N</em> is the unit normal of the surface and <em>X</em> is a Killing vector field of <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>×</mo><mi>R</mi></math></span>. In this paper we consider the cases that <em>X</em> is the vector field tangent to the second factor and the vector field associated to rotations about an axis of <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, respectively. We give a classification of the solitons with respect to these vector fields assuming that the surface is invariant under a one-parameter group of vertical translations or rotations of <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"99 ","pages":"Article 102243"},"PeriodicalIF":0.6000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092622452500018X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A soliton of the mean curvature flow in the product space S2×R is a surface whose mean curvature H satisfies the equation H=N,X, where N is the unit normal of the surface and X is a Killing vector field of S2×R. In this paper we consider the cases that X is the vector field tangent to the second factor and the vector field associated to rotations about an axis of S2, respectively. We give a classification of the solitons with respect to these vector fields assuming that the surface is invariant under a one-parameter group of vertical translations or rotations of S2.
平均曲率的孤子流在S2×R
积空间S2×R中平均曲率流的一个孤子是平均曲率H满足方程H= < N,X >的曲面,其中N为曲面的单位法线,X为S2×R的一个杀戮向量场。在本文中,我们分别考虑X是与第二因子相切的向量场和与绕S2轴旋转相关的向量场的情况。假设表面在S2的垂直平移或旋转的单参数群下是不变的,我们给出了关于这些向量场的孤子的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信