Advances in Mathematics最新文献

筛选
英文 中文
Geometric structures for the G2′-Hitchin component
IF 1.5 1区 数学
Advances in Mathematics Pub Date : 2025-02-01 DOI: 10.1016/j.aim.2024.110091
Parker Evans
{"title":"Geometric structures for the G2′-Hitchin component","authors":"Parker Evans","doi":"10.1016/j.aim.2024.110091","DOIUrl":"10.1016/j.aim.2024.110091","url":null,"abstract":"<div><div>We give an explicit geometric structures interpretation of the <span><math><msubsup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>′</mo></mrow></msubsup></math></span>-Hitchin component <span><math><mrow><mi>Hit</mi></mrow><mo>(</mo><mi>S</mi><mo>,</mo><msubsup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>′</mo></mrow></msubsup><mo>)</mo><mo>⊂</mo><mi>χ</mi><mo>(</mo><msub><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>S</mi><mo>,</mo><msubsup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>′</mo></mrow></msubsup><mo>)</mo></math></span> of a closed oriented surface <em>S</em> of genus <span><math><mi>g</mi><mo>≥</mo><mn>2</mn></math></span>. In particular, we prove <span><math><mrow><mi>Hit</mi></mrow><mo>(</mo><mi>S</mi><mo>,</mo><msubsup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>′</mo></mrow></msubsup><mo>)</mo></math></span> is naturally homeomorphic to a moduli space <span><math><mi>M</mi></math></span> of <span><math><mo>(</mo><mi>G</mi><mo>,</mo><mi>X</mi><mo>)</mo></math></span>-structures for <span><math><mi>G</mi><mo>=</mo><msubsup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>′</mo></mrow></msubsup></math></span> and <span><math><mi>X</mi><mo>=</mo><msup><mrow><mi>Ein</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>3</mn></mrow></msup></math></span> on a fiber bundle <span><math><mi>C</mi></math></span> over <em>S</em> via the descended holonomy map. Explicitly, <span><math><mi>C</mi></math></span> is the direct sum of fiber bundles <figure><img></figure> with fiber <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>=</mo><mi>U</mi><msub><mrow><mi>T</mi></mrow><mrow><mi>p</mi></mrow></msub><mi>S</mi><mo>×</mo><mi>U</mi><msub><mrow><mi>T</mi></mrow><mrow><mi>p</mi></mrow></msub><mi>S</mi><mo>×</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span>, where <em>UTS</em> denotes the unit tangent bundle.</div><div>The geometric structure associated to a <span><math><msubsup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>′</mo></mrow></msubsup></math></span>-Hitchin representation <em>ρ</em> is explicitly constructed from the unique associated <em>ρ</em>-equivariant alternating almost-complex curve <span><math><mover><mrow><mi>ν</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>:</mo><mover><mrow><mi>S</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>→</mo><msup><mrow><mover><mrow><mi>S</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mn>2</mn><mo>,</mo><mn>4</mn></mrow></msup></math></span>; we critically use recent work of Collier-Toulisse on the moduli space of such curves. Our explicit geometric structures are examined in the <span><math><msubsup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>′</mo></mrow></msubsup></math></span>-Fuchsian case and shown to be unrelated to the <span><math><mo>(</mo><msubsup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>′</mo></mrow></msubsup><mo>,</mo><msup><mrow><mi>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"462 ","pages":"Article 110091"},"PeriodicalIF":1.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143149613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A semi-pseudo-Kähler structure on the SL(3,R)-Hitchin component and the Goldman symplectic form
IF 1.5 1区 数学
Advances in Mathematics Pub Date : 2025-02-01 DOI: 10.1016/j.aim.2024.110066
Nicholas Rungi , Andrea Tamburelli
{"title":"A semi-pseudo-Kähler structure on the SL(3,R)-Hitchin component and the Goldman symplectic form","authors":"Nicholas Rungi ,&nbsp;Andrea Tamburelli","doi":"10.1016/j.aim.2024.110066","DOIUrl":"10.1016/j.aim.2024.110066","url":null,"abstract":"<div><div>The aim of this paper is to show the existence and give an explicit description of a semi-pseudo-Riemannian metric and a symplectic form on the <span><math><mi>SL</mi><mo>(</mo><mn>3</mn><mo>,</mo><mi>R</mi><mo>)</mo></math></span>-Hitchin component, both compatible with Labourie and Loftin's complex structure. In particular, they are non-degenerate on a neighborhood of the Fuchsian locus, where they give rise to a mapping class group invariant pseudo-Kähler structure that restricts to a multiple of the Weil-Petersson metric on Teichmüller space. By comparing our symplectic form with Goldman's <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span>, we prove that the pair <span><math><mo>(</mo><msub><mrow><mi>ω</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>,</mo><mi>I</mi><mo>)</mo></math></span> cannot define a Kähler structure on the Hitchin component.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"461 ","pages":"Article 110066"},"PeriodicalIF":1.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143164191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hausdorff dimension of singular vectors in function fields
IF 1.5 1区 数学
Advances in Mathematics Pub Date : 2025-02-01 DOI: 10.1016/j.aim.2024.110084
Noy Soffer Aranov , Taehyeong Kim
{"title":"Hausdorff dimension of singular vectors in function fields","authors":"Noy Soffer Aranov ,&nbsp;Taehyeong Kim","doi":"10.1016/j.aim.2024.110084","DOIUrl":"10.1016/j.aim.2024.110084","url":null,"abstract":"<div><div>We compute the Hausdorff dimension of the set of singular vectors in function fields and bound the Hausdorff dimension of the set of <em>ε</em>-Dirichlet improvable vectors in this setting. This is a function field analogue of the results of Cheung and Chevallier (2016) <span><span>[9]</span></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"461 ","pages":"Article 110084"},"PeriodicalIF":1.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143164294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Varopoulos extensions in domains with Ahlfors-regular boundaries and applications to Boundary Value Problems for elliptic systems with L∞ coefficients
IF 1.5 1区 数学
Advances in Mathematics Pub Date : 2025-02-01 DOI: 10.1016/j.aim.2024.110054
Mihalis Mourgoglou , Thanasis Zacharopoulos
{"title":"Varopoulos extensions in domains with Ahlfors-regular boundaries and applications to Boundary Value Problems for elliptic systems with L∞ coefficients","authors":"Mihalis Mourgoglou ,&nbsp;Thanasis Zacharopoulos","doi":"10.1016/j.aim.2024.110054","DOIUrl":"10.1016/j.aim.2024.110054","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Let &lt;span&gt;&lt;math&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;⊂&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, be an open set with &lt;em&gt;s&lt;/em&gt;-Ahlfors regular boundary ∂Ω, for some &lt;span&gt;&lt;math&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, such that either &lt;span&gt;&lt;math&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; and Ω is a corkscrew domain with the pointwise John condition, or &lt;span&gt;&lt;math&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;∖&lt;/mo&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, for some &lt;em&gt;s&lt;/em&gt;-Ahlfors regular set &lt;span&gt;&lt;math&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mo&gt;⊂&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;. In this paper we provide a unifying method to construct Varopoulos type extensions of BMO and &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; boundary functions. In particular, we show that a) if &lt;span&gt;&lt;math&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;BMO&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mo&gt;∂&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, there exists &lt;span&gt;&lt;math&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; such that &lt;span&gt;&lt;math&gt;&lt;mtext&gt;dist&lt;/mtext&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;∇&lt;/mi&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; is uniformly bounded in Ω and the Carleson functional of &lt;span&gt;&lt;math&gt;&lt;mtext&gt;dist&lt;/mtext&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;∇&lt;/mi&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; as well the sharp non-tangential maximal function of &lt;em&gt;F&lt;/em&gt; are uniformly bounded on ∂Ω with norms controlled by the BMO-norm of &lt;em&gt;f&lt;/em&gt;, and &lt;span&gt;&lt;math&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; in a certain non-tangential sense &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∂&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;-almost everywhere; b) if &lt;span&gt;&lt;math&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;¯&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mo&gt;∂&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, there exists &lt;span&gt;&lt;math&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;¯&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; such that the non-tangential maximal functions of &lt;span&gt;&lt;math&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;¯&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"461 ","pages":"Article 110054"},"PeriodicalIF":1.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143164296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analytic and topological nets
IF 1.5 1区 数学
Advances in Mathematics Pub Date : 2025-02-01 DOI: 10.1016/j.aim.2024.110042
Kirill Lazebnik
{"title":"Analytic and topological nets","authors":"Kirill Lazebnik","doi":"10.1016/j.aim.2024.110042","DOIUrl":"10.1016/j.aim.2024.110042","url":null,"abstract":"<div><div>We characterize which planar graphs arise as the pullback, under a rational map <em>r</em>, of an analytic Jordan curve passing through the critical values of <em>r</em>. We also prove that such pullbacks are dense within the collection of <span><math><msup><mrow><mi>f</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>Σ</mi><mo>)</mo></math></span>, where <em>f</em> is a branched cover of the sphere and Σ is a Jordan curve passing through the branched values of <em>f</em>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"461 ","pages":"Article 110042"},"PeriodicalIF":1.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143164290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Projective rigidity of circle packings
IF 1.5 1区 数学
Advances in Mathematics Pub Date : 2025-02-01 DOI: 10.1016/j.aim.2024.110024
Francesco Bonsante, Michael Wolf
{"title":"Projective rigidity of circle packings","authors":"Francesco Bonsante,&nbsp;Michael Wolf","doi":"10.1016/j.aim.2024.110024","DOIUrl":"10.1016/j.aim.2024.110024","url":null,"abstract":"<div><div>We prove that the space of circle packings compatible with a given triangulation on a surface of genus at least two is projectively rigid, so that a packing on a complex projective surface is not deformable within that complex projective structure. More broadly, we show that the space of circle packings is a submanifold within the space of complex projective structures on that surface.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"461 ","pages":"Article 110024"},"PeriodicalIF":1.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143164299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The fake monster algebra and singular Borcherds products
IF 1.5 1区 数学
Advances in Mathematics Pub Date : 2025-02-01 DOI: 10.1016/j.aim.2024.110083
Haowu Wang , Brandon Williams
{"title":"The fake monster algebra and singular Borcherds products","authors":"Haowu Wang ,&nbsp;Brandon Williams","doi":"10.1016/j.aim.2024.110083","DOIUrl":"10.1016/j.aim.2024.110083","url":null,"abstract":"<div><div>In this paper we consider several problems in the theory of automorphic products and generalized Kac–Moody algebras proposed by Borcherds in 1995. We show that the denominator of the fake monster algebra defines the unique holomorphic Borcherds product of singular weight on a maximal lattice. We give a full classification of symmetric holomorphic Borcherds products of singular weight on lattices of prime level. Finally we prove that all twisted denominator identities of the fake monster algebra arise as the Fourier expansions of Borcherds products of singular weight at a certain cusp. The proofs rely on an identification between modular forms for the Weil representation attached to lattices of type <span><math><mi>U</mi><mo>(</mo><mi>N</mi><mo>)</mo><mo>⊕</mo><mi>U</mi><mo>⊕</mo><mi>L</mi></math></span> and certain tuples of Jacobi forms of level <em>N</em>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"461 ","pages":"Article 110083"},"PeriodicalIF":1.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143164293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New exotic examples of Ricci limit spaces
IF 1.5 1区 数学
Advances in Mathematics Pub Date : 2025-02-01 DOI: 10.1016/j.aim.2024.110098
Xilun Li , Shengxuan Zhou
{"title":"New exotic examples of Ricci limit spaces","authors":"Xilun Li ,&nbsp;Shengxuan Zhou","doi":"10.1016/j.aim.2024.110098","DOIUrl":"10.1016/j.aim.2024.110098","url":null,"abstract":"<div><div>For any integers <span><math><mi>m</mi><mo>⩾</mo><mi>n</mi><mo>⩾</mo><mn>3</mn></math></span>, we construct a Ricci limit space <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> such that for a fixed point, some tangent cones are <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span> and some are <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. This is an improvement of Menguy's example <span><span>[3]</span></span>. Moreover, we show that for any finite collection of closed Riemannian manifolds <span><math><mo>(</mo><msubsup><mrow><mi>M</mi></mrow><mrow><mi>i</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msubsup><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></math></span> with <span><math><msub><mrow><mi>Ric</mi></mrow><mrow><msub><mrow><mi>g</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><mo>⩾</mo><mo>(</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>−</mo><mn>1</mn><mo>)</mo><mo>⩾</mo><mn>1</mn></math></span>, there exists a collapsed Ricci limit space <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>d</mi><mo>,</mo><mi>x</mi><mo>)</mo></math></span> such that each Riemannian cone <span><math><mi>C</mi><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></math></span> is a tangent cone of <em>X</em> at <em>x</em>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"462 ","pages":"Article 110098"},"PeriodicalIF":1.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143150241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shifted symplectic structures on derived Quot-stacks II – derived Quot-schemes as dg manifolds
IF 1.5 1区 数学
Advances in Mathematics Pub Date : 2025-02-01 DOI: 10.1016/j.aim.2024.110092
Dennis Borisov , Ludmil Katzarkov , Artan Sheshmani
{"title":"Shifted symplectic structures on derived Quot-stacks II – derived Quot-schemes as dg manifolds","authors":"Dennis Borisov ,&nbsp;Ludmil Katzarkov ,&nbsp;Artan Sheshmani","doi":"10.1016/j.aim.2024.110092","DOIUrl":"10.1016/j.aim.2024.110092","url":null,"abstract":"<div><div>It is proved that derived <span><math><mi>Q</mi><mi>u</mi><mi>o</mi><mi>t</mi></math></span>-schemes, as defined by Ciocan-Fontanine and Kapranov, are represented by dg manifolds of finite type. This is the second part of a work aimed to analyze shifted symplectic structures on moduli spaces of coherent sheaves on Calabi–Yau manifolds. The first part related dg manifolds to derived schemes as defined by Toën and Vezzosi.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"462 ","pages":"Article 110092"},"PeriodicalIF":1.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143150249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual boundary complexes of Betti moduli spaces over the two-sphere with one irregular singularity
IF 1.5 1区 数学
Advances in Mathematics Pub Date : 2025-02-01 DOI: 10.1016/j.aim.2024.110101
Tao Su
{"title":"Dual boundary complexes of Betti moduli spaces over the two-sphere with one irregular singularity","authors":"Tao Su","doi":"10.1016/j.aim.2024.110101","DOIUrl":"10.1016/j.aim.2024.110101","url":null,"abstract":"<div><div>The weak geometric P=W conjecture of L. Katzarkov, A. Noll, P. Pandit, and C. Simpson states that, a smooth Betti moduli space of complex dimension <em>d</em> over a punctured Riemann surface has the dual boundary complex homotopy equivalent to a sphere of dimension <span><math><mi>d</mi><mo>−</mo><mn>1</mn></math></span>. Via a microlocal geometric perspective, we verify this conjecture for a class of rank <em>n</em> wild character varieties over the two-sphere with one puncture, associated with any Stokes Legendrian link defined by an <em>n</em>-strand positive braid.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"462 ","pages":"Article 110101"},"PeriodicalIF":1.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143150250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信