Grothendieck-Verdier module categories, Frobenius algebras and relative Serre functors

IF 1.5 1区 数学 Q1 MATHEMATICS
Jürgen Fuchs , Gregor Schaumann , Christoph Schweigert , Simon Wood
{"title":"Grothendieck-Verdier module categories, Frobenius algebras and relative Serre functors","authors":"Jürgen Fuchs ,&nbsp;Gregor Schaumann ,&nbsp;Christoph Schweigert ,&nbsp;Simon Wood","doi":"10.1016/j.aim.2025.110325","DOIUrl":null,"url":null,"abstract":"<div><div>We develop the theory of module categories over a Grothendieck-Verdier category <span><math><mi>C</mi></math></span>, i.e. a monoidal category with a dualizing object and hence a duality structure more general than rigidity. Such a category comes with two monoidal structures ⊗ and <figure><img></figure> which are related by non-invertible morphisms and which we treat on an equal footing. Quite generally, non-invertible structure morphisms play a dominant role in this theory. In any Grothendieck-Verdier module category <span><math><mi>M</mi></math></span> we find two distinguished subcategories <figure><img></figure> and <span><math><msup><mrow><mover><mrow><mi>M</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mo>⊗</mo></mrow></msup></math></span>, which can be characterized by certain structure morphisms being actually invertible. The internal Hom <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>m</mi></mrow></msub><mspace></mspace><mo>:</mo><mo>=</mo><munder><mrow><mrow><mi>Hom</mi></mrow></mrow><mo>_</mo></munder><mo>(</mo><mi>m</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span> of an object <em>m</em> in <span><math><msup><mrow><mover><mrow><mi>M</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mo>⊗</mo></mrow></msup></math></span> that is a <span><math><mi>C</mi></math></span>-generator is an algebra such that <span><math><mrow><mi>mod</mi></mrow><mtext>-</mtext><msub><mrow><mi>A</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> is equivalent to <span><math><mi>M</mi></math></span> as a module category. Crucially, the subcategories <figure><img></figure> and <span><math><msup><mrow><mover><mrow><mi>M</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mo>⊗</mo></mrow></msup></math></span> are precisely those on which a relative Serre functor can be defined. This relative Serre functor furnishes an equivalence <figure><img></figure>, and any isomorphism <span><math><mi>m</mi><mspace></mspace><mover><mrow><mo>→</mo></mrow><mrow><mspace></mspace><mo>≅</mo><mspace></mspace></mrow></mover><mspace></mspace><mi>S</mi><mo>(</mo><mi>m</mi><mo>)</mo></math></span> endows the algebra <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> with the structure of a Grothendieck-Verdier Frobenius algebra.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"475 ","pages":"Article 110325"},"PeriodicalIF":1.5000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825002233","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We develop the theory of module categories over a Grothendieck-Verdier category C, i.e. a monoidal category with a dualizing object and hence a duality structure more general than rigidity. Such a category comes with two monoidal structures ⊗ and
which are related by non-invertible morphisms and which we treat on an equal footing. Quite generally, non-invertible structure morphisms play a dominant role in this theory. In any Grothendieck-Verdier module category M we find two distinguished subcategories
and Mˆ, which can be characterized by certain structure morphisms being actually invertible. The internal Hom Am:=Hom_(m,m) of an object m in Mˆ that is a C-generator is an algebra such that mod-Am is equivalent to M as a module category. Crucially, the subcategories
and Mˆ are precisely those on which a relative Serre functor can be defined. This relative Serre functor furnishes an equivalence
, and any isomorphism mS(m) endows the algebra Am with the structure of a Grothendieck-Verdier Frobenius algebra.
grothendiek - verdier模范畴,Frobenius代数和相关Serre函子
我们在Grothendieck-Verdier范畴C上发展了模范畴的理论,即具有对偶对象的一元范畴,因此具有比刚性更一般的对偶结构。这样的范畴有两个单形结构,它们是由不可逆的态射联系起来的,我们平等地对待它们。一般来说,不可逆结构态射在这一理论中起主导作用。在任意的Grothendieck-Verdier模范畴M中,我们发现了两个不同的子范畴和M -⊗,它们可以被表征为某些结构态射实际上是可逆的。在m´⊗中作为c -生成器的对象m的内部homam:=Hom_(m,m)是一个代数,使得mod-Am等价于作为模范畴的m。至关重要的是,子范畴和M´⊗正是那些可以定义相对Serre函子的子范畴。这个相对的Serre函子提供了一个等价,并且任意同构m→= S(m)赋予代数Am一个Grothendieck-Verdier Frobenius代数的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信