The Ricci iteration towards cscK metrics

IF 1.5 1区 数学 Q1 MATHEMATICS
Kewei Zhang
{"title":"The Ricci iteration towards cscK metrics","authors":"Kewei Zhang","doi":"10.1016/j.aim.2025.110340","DOIUrl":null,"url":null,"abstract":"<div><div>Motivated by the problem of finding constant scalar curvature Kähler metrics, we investigate a Ricci iteration sequence of Rubinstein that discretizes the pseudo-Calabi flow. While the long time existence of the flow is still an open question, we show that the iteration sequence does exist for all steps, along which the K-energy decreases. We further show that the iteration sequence, modulo automorphisms, converges smoothly to a constant scalar curvature Kähler metric if there is one, thus confirming a conjecture of Rubinstein from 2007 and extending results of Darvas–Rubinstein to arbitrary Kähler classes.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"475 ","pages":"Article 110340"},"PeriodicalIF":1.5000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825002385","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by the problem of finding constant scalar curvature Kähler metrics, we investigate a Ricci iteration sequence of Rubinstein that discretizes the pseudo-Calabi flow. While the long time existence of the flow is still an open question, we show that the iteration sequence does exist for all steps, along which the K-energy decreases. We further show that the iteration sequence, modulo automorphisms, converges smoothly to a constant scalar curvature Kähler metric if there is one, thus confirming a conjecture of Rubinstein from 2007 and extending results of Darvas–Rubinstein to arbitrary Kähler classes.
Ricci对cscK指标的迭代
基于寻找常数标量曲率Kähler度量的问题,研究了离散伪calabi流的Rubinstein Ricci迭代序列。虽然流的长时间存在仍然是一个悬而未决的问题,但我们表明,在k能量减小的所有步骤中,迭代序列确实存在。我们进一步证明了迭代序列模自同构平滑地收敛于一个常数标量曲率Kähler度规,从而证实了Rubinstein 2007年的一个猜想,并将Darvas-Rubinstein的结果推广到任意Kähler类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信