Curvature homogeneous hypersurfaces in space forms

IF 1.5 1区 数学 Q1 MATHEMATICS
Robert Bryant , Luis Florit , Wolfgang Ziller
{"title":"Curvature homogeneous hypersurfaces in space forms","authors":"Robert Bryant ,&nbsp;Luis Florit ,&nbsp;Wolfgang Ziller","doi":"10.1016/j.aim.2025.110338","DOIUrl":null,"url":null,"abstract":"<div><div>We provide a classification of curvature homogeneous hypersurfaces in space forms by classifying the ones in <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span>. In higher dimensions, besides the isoparametric and the constant curvature ones, there is a single one in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>5</mn></mrow></msup></math></span>. Besides the obvious examples, we show that there exists an isolated hypersurface with a circle of symmetries and a one parameter family admitting no continuous symmetries. Outside the set of minimal points, which only exists in the case of <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span>, every example is, locally and up to covers, of this form.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"475 ","pages":"Article 110338"},"PeriodicalIF":1.5000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825002361","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We provide a classification of curvature homogeneous hypersurfaces in space forms by classifying the ones in S4 and H4. In higher dimensions, besides the isoparametric and the constant curvature ones, there is a single one in H5. Besides the obvious examples, we show that there exists an isolated hypersurface with a circle of symmetries and a one parameter family admitting no continuous symmetries. Outside the set of minimal points, which only exists in the case of S4, every example is, locally and up to covers, of this form.
空间形式的曲率齐次超曲面
通过对S4和H4中的曲率齐次超曲面进行分类,给出了空间形式下曲率齐次超曲面的分类方法。在高维中,除了等参和常曲率外,在H5中只有一个。除了这些明显的例子外,我们还证明了存在一个具有一圈对称和一个不允许连续对称的单参数族的孤立超曲面。在最小点的集合之外,它只存在于S4的情况下,每个例子在局部范围内都是这种形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信