Jürgen Fuchs , Gregor Schaumann , Christoph Schweigert , Simon Wood
{"title":"grothendiek - verdier模范畴,Frobenius代数和相关Serre函子","authors":"Jürgen Fuchs , Gregor Schaumann , Christoph Schweigert , Simon Wood","doi":"10.1016/j.aim.2025.110325","DOIUrl":null,"url":null,"abstract":"<div><div>We develop the theory of module categories over a Grothendieck-Verdier category <span><math><mi>C</mi></math></span>, i.e. a monoidal category with a dualizing object and hence a duality structure more general than rigidity. Such a category comes with two monoidal structures ⊗ and <figure><img></figure> which are related by non-invertible morphisms and which we treat on an equal footing. Quite generally, non-invertible structure morphisms play a dominant role in this theory. In any Grothendieck-Verdier module category <span><math><mi>M</mi></math></span> we find two distinguished subcategories <figure><img></figure> and <span><math><msup><mrow><mover><mrow><mi>M</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mo>⊗</mo></mrow></msup></math></span>, which can be characterized by certain structure morphisms being actually invertible. The internal Hom <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>m</mi></mrow></msub><mspace></mspace><mo>:</mo><mo>=</mo><munder><mrow><mrow><mi>Hom</mi></mrow></mrow><mo>_</mo></munder><mo>(</mo><mi>m</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span> of an object <em>m</em> in <span><math><msup><mrow><mover><mrow><mi>M</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mo>⊗</mo></mrow></msup></math></span> that is a <span><math><mi>C</mi></math></span>-generator is an algebra such that <span><math><mrow><mi>mod</mi></mrow><mtext>-</mtext><msub><mrow><mi>A</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> is equivalent to <span><math><mi>M</mi></math></span> as a module category. Crucially, the subcategories <figure><img></figure> and <span><math><msup><mrow><mover><mrow><mi>M</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mo>⊗</mo></mrow></msup></math></span> are precisely those on which a relative Serre functor can be defined. This relative Serre functor furnishes an equivalence <figure><img></figure>, and any isomorphism <span><math><mi>m</mi><mspace></mspace><mover><mrow><mo>→</mo></mrow><mrow><mspace></mspace><mo>≅</mo><mspace></mspace></mrow></mover><mspace></mspace><mi>S</mi><mo>(</mo><mi>m</mi><mo>)</mo></math></span> endows the algebra <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> with the structure of a Grothendieck-Verdier Frobenius algebra.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"475 ","pages":"Article 110325"},"PeriodicalIF":1.5000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grothendieck-Verdier module categories, Frobenius algebras and relative Serre functors\",\"authors\":\"Jürgen Fuchs , Gregor Schaumann , Christoph Schweigert , Simon Wood\",\"doi\":\"10.1016/j.aim.2025.110325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We develop the theory of module categories over a Grothendieck-Verdier category <span><math><mi>C</mi></math></span>, i.e. a monoidal category with a dualizing object and hence a duality structure more general than rigidity. Such a category comes with two monoidal structures ⊗ and <figure><img></figure> which are related by non-invertible morphisms and which we treat on an equal footing. Quite generally, non-invertible structure morphisms play a dominant role in this theory. In any Grothendieck-Verdier module category <span><math><mi>M</mi></math></span> we find two distinguished subcategories <figure><img></figure> and <span><math><msup><mrow><mover><mrow><mi>M</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mo>⊗</mo></mrow></msup></math></span>, which can be characterized by certain structure morphisms being actually invertible. The internal Hom <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>m</mi></mrow></msub><mspace></mspace><mo>:</mo><mo>=</mo><munder><mrow><mrow><mi>Hom</mi></mrow></mrow><mo>_</mo></munder><mo>(</mo><mi>m</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span> of an object <em>m</em> in <span><math><msup><mrow><mover><mrow><mi>M</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mo>⊗</mo></mrow></msup></math></span> that is a <span><math><mi>C</mi></math></span>-generator is an algebra such that <span><math><mrow><mi>mod</mi></mrow><mtext>-</mtext><msub><mrow><mi>A</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> is equivalent to <span><math><mi>M</mi></math></span> as a module category. Crucially, the subcategories <figure><img></figure> and <span><math><msup><mrow><mover><mrow><mi>M</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mo>⊗</mo></mrow></msup></math></span> are precisely those on which a relative Serre functor can be defined. This relative Serre functor furnishes an equivalence <figure><img></figure>, and any isomorphism <span><math><mi>m</mi><mspace></mspace><mover><mrow><mo>→</mo></mrow><mrow><mspace></mspace><mo>≅</mo><mspace></mspace></mrow></mover><mspace></mspace><mi>S</mi><mo>(</mo><mi>m</mi><mo>)</mo></math></span> endows the algebra <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> with the structure of a Grothendieck-Verdier Frobenius algebra.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"475 \",\"pages\":\"Article 110325\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825002233\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825002233","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Grothendieck-Verdier module categories, Frobenius algebras and relative Serre functors
We develop the theory of module categories over a Grothendieck-Verdier category , i.e. a monoidal category with a dualizing object and hence a duality structure more general than rigidity. Such a category comes with two monoidal structures ⊗ and which are related by non-invertible morphisms and which we treat on an equal footing. Quite generally, non-invertible structure morphisms play a dominant role in this theory. In any Grothendieck-Verdier module category we find two distinguished subcategories and , which can be characterized by certain structure morphisms being actually invertible. The internal Hom of an object m in that is a -generator is an algebra such that is equivalent to as a module category. Crucially, the subcategories and are precisely those on which a relative Serre functor can be defined. This relative Serre functor furnishes an equivalence , and any isomorphism endows the algebra with the structure of a Grothendieck-Verdier Frobenius algebra.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.