Cox rings of nef anticanonical rational surfaces

IF 1.5 1区 数学 Q1 MATHEMATICS
Michela Artebani, Sofía Pérez Garbayo
{"title":"Cox rings of nef anticanonical rational surfaces","authors":"Michela Artebani,&nbsp;Sofía Pérez Garbayo","doi":"10.1016/j.aim.2025.110328","DOIUrl":null,"url":null,"abstract":"<div><div>This paper deals with the problem of computing a generating set for the Cox ring <span><math><mi>R</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> of a smooth projective rational surface <em>X</em> with nef anticanonical class. In case <span><math><mi>R</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> is finitely generated, we show that the degrees of its generators are either classes of negative curves, elements of the Hilbert basis of the nef cone or certain ample classes of anticanonical degree one, which only appear when <em>X</em> is a rational elliptic surface of Halphen index <span><math><mi>m</mi><mo>&gt;</mo><mn>2</mn></math></span>. Moreover, we partially characterize which elements of the Hilbert basis of the nef cone are irredundant for generating <span><math><mi>R</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span>. We apply this result to compute explicit minimal generating sets for Cox rings of some rational elliptic surfaces of Halphen index &gt;1.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"475 ","pages":"Article 110328"},"PeriodicalIF":1.5000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825002269","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with the problem of computing a generating set for the Cox ring R(X) of a smooth projective rational surface X with nef anticanonical class. In case R(X) is finitely generated, we show that the degrees of its generators are either classes of negative curves, elements of the Hilbert basis of the nef cone or certain ample classes of anticanonical degree one, which only appear when X is a rational elliptic surface of Halphen index m>2. Moreover, we partially characterize which elements of the Hilbert basis of the nef cone are irredundant for generating R(X). We apply this result to compute explicit minimal generating sets for Cox rings of some rational elliptic surfaces of Halphen index >1.
网络反正则有理曲面的Cox环
本文研究具有非反正则类的光滑射影有理曲面X上的Cox环R(X)的发电集的计算问题。当R(X)是有限生成时,我们证明了它的生成子的度要么是一类负曲线,要么是nef锥的Hilbert基的元素,要么是反不规则次1的某些样本类,只有当X是Halphen指数为m>的有理椭圆曲面时才会出现;此外,我们部分地描述了nef锥的Hilbert基的哪些元素对于生成R(X)是不冗余的。我们应用这一结果计算了Halphen指数为1的有理椭圆曲面上Cox环的显式极小生成集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信