{"title":"高维斯坦因平方函数的新边界","authors":"Shengwen Gan , Changkeun Oh , Shukun Wu","doi":"10.1016/j.aim.2025.110342","DOIUrl":null,"url":null,"abstract":"<div><div>We improve the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> bounds on Stein's square function to the best-known range of the Fourier restriction problem when <span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span>. Applications, including certain local smoothing estimates, are also discussed.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"475 ","pages":"Article 110342"},"PeriodicalIF":1.5000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New bounds for Stein's square functions in higher dimensions\",\"authors\":\"Shengwen Gan , Changkeun Oh , Shukun Wu\",\"doi\":\"10.1016/j.aim.2025.110342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We improve the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> bounds on Stein's square function to the best-known range of the Fourier restriction problem when <span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span>. Applications, including certain local smoothing estimates, are also discussed.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"475 \",\"pages\":\"Article 110342\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825002403\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825002403","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
New bounds for Stein's square functions in higher dimensions
We improve the bounds on Stein's square function to the best-known range of the Fourier restriction problem when . Applications, including certain local smoothing estimates, are also discussed.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.