Measure and dimension theory of permeable sets and its applications to fractals

IF 1.5 1区 数学 Q1 MATHEMATICS
Gunther Leobacher , Tapio Rajala , Alexander Steinicke , Jörg Thuswaldner
{"title":"Measure and dimension theory of permeable sets and its applications to fractals","authors":"Gunther Leobacher ,&nbsp;Tapio Rajala ,&nbsp;Alexander Steinicke ,&nbsp;Jörg Thuswaldner","doi":"10.1016/j.aim.2025.110316","DOIUrl":null,"url":null,"abstract":"<div><div>We study <em>permeable</em> sets. These are sets <span><math><mi>Θ</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> which have the property that each two points <span><math><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> can be connected by a short path <em>γ</em> which has small (or even empty, apart from the end points of <em>γ</em>) intersection with Θ. We investigate relations between permeability and Lebesgue measure and establish theorems on the relation of permeability with several notions of dimension. It turns out that for most notions of dimension each subset of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> of dimension less than <span><math><mi>d</mi><mo>−</mo><mn>1</mn></math></span> is permeable. We use our permeability result on the Nagata dimension to characterize permeability properties of self-similar sets with certain finiteness properties.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"474 ","pages":"Article 110316"},"PeriodicalIF":1.5000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825002142","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study permeable sets. These are sets ΘRd which have the property that each two points x,yRd can be connected by a short path γ which has small (or even empty, apart from the end points of γ) intersection with Θ. We investigate relations between permeability and Lebesgue measure and establish theorems on the relation of permeability with several notions of dimension. It turns out that for most notions of dimension each subset of Rd of dimension less than d1 is permeable. We use our permeability result on the Nagata dimension to characterize permeability properties of self-similar sets with certain finiteness properties.
可渗透集的测度维数理论及其在分形中的应用
我们研究可渗透集。这些集合Θ∧Rd具有这样的性质:每两个点x,y∈Rd都可以通过一条短路径γ连接起来,这条短路径γ与Θ相交很小(除了γ的端点之外,甚至是空的)。研究了渗透率与勒贝格测度之间的关系,用几个量纲概念建立了渗透率关系定理。结果是对于大多数维度的概念,维度小于d - 1的Rd的每个子集都是可渗透的。我们利用我们在Nagata维上的渗透率结果来表征具有一定有限性的自相似集的渗透率特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信