Developmental Neuroscience最新文献

筛选
英文 中文
Does Perinatal Intermittent Hypoxia Affect Cerebrovascular Network Development? 围产期间歇性缺氧会影响脑血管网络发育吗?
IF 2.9 4区 医学
Developmental Neuroscience Pub Date : 2024-01-01 Epub Date: 2023-05-09 DOI: 10.1159/000530957
Vanessa Coelho-Santos, Anne-Jolene N Cruz, Andy Y Shih
{"title":"Does Perinatal Intermittent Hypoxia Affect Cerebrovascular Network Development?","authors":"Vanessa Coelho-Santos, Anne-Jolene N Cruz, Andy Y Shih","doi":"10.1159/000530957","DOIUrl":"10.1159/000530957","url":null,"abstract":"<p><p>Perinatal hypoxia is an inadequate delivery of oxygen to the fetus in the period immediately before, during, or after the birth process. The most frequent form of hypoxia occurring in human development is chronic intermittent hypoxia (CIH) due to sleep-disordered breathing (apnea) or bradycardia events. CIH incidence is particularly high with premature infants. During CIH, repetitive cycles of hypoxia and reoxygenation initiate oxidative stress and inflammatory cascades in the brain. A dense microvascular network of arterioles, capillaries, and venules is required to support the constant metabolic demands of the adult brain. The development and refinement of this microvasculature is orchestrated throughout gestation and in the initial weeks after birth, at a critical juncture when CIH can occur. There is little knowledge on how CIH affects the development of the cerebrovasculature. However, since CIH (and its treatments) can cause profound abnormalities in tissue oxygen content and neural activity, there is reason to believe that it can induce lasting abnormalities in vascular structure and function at the microvascular level contributing to neurodevelopmental disorders. This mini-review discusses the hypothesis that CIH induces a positive feedback loop to perpetuate metabolic insufficiency through derailment of normal cerebrovascular development, leading to long-term deficiencies in cerebrovascular function.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"44-54"},"PeriodicalIF":2.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9521911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fluoxetine Can Cause Epileptogenesis and Aberrant Neurogenesis in Male Wild-Type Mice. 氟西汀会导致雄性野生型小鼠癫痫发生和神经发生异常
IF 2.9 4区 医学
Developmental Neuroscience Pub Date : 2024-01-01 Epub Date: 2023-06-09 DOI: 10.1159/000531478
Ksenia Musaelyan, Mark A Horowitz, Stephen McHugh, Francis G Szele
{"title":"Fluoxetine Can Cause Epileptogenesis and Aberrant Neurogenesis in Male Wild-Type Mice.","authors":"Ksenia Musaelyan, Mark A Horowitz, Stephen McHugh, Francis G Szele","doi":"10.1159/000531478","DOIUrl":"10.1159/000531478","url":null,"abstract":"<p><p>Antidepressants in general, and fluoxetine in particular, increase adult hippocampal neurogenesis (AHN) in mice. Here we asked how the antidepressant fluoxetine affects behavior and AHN in a corticosterone model of depression. In three groups of adult male C57BL/6j mice, we administered either vehicle (VEH), corticosterone (CORT) treatment to induce a depression-like state, or corticosterone plus a standard dose of fluoxetine (CORT+FLX). Following treatment, mice performed the open field test, the novelty suppressed feeding (NSF) test, and the splash test. Neurogenesis was assessed by means of immunohistochemistry using BrdU and neuronal maturation markers. Unexpectedly, 42% of the CORT+FLX-treated mice exhibited severe weight loss, seizures, and sudden death. As expected, the CORT-treated group had altered behaviors compared to the VEH group, but the CORT+FLX mice that survived did not show any behavioral improvement compared to the CORT group. Antidepressants generally increase neurogenesis and here we also found that compared to CORT mice, CORT+FLX mice that survived had a significantly greater density of BrdU+, BrdU+DCX+, and BrdU+NeuN+ cells, suggesting increased neurogenesis. Moreover, the density of BrdU+NeuN+ cells was increased in an aberrant location, the hilus, of CORT+FLX mice, similar to previous studies describing aberrant neurogenesis following seizures. In conclusion, fluoxetine could induce considerable adverse effects in wild-type mice, including seizure-like activity. Fluoxetine-induced neurogenesis increases could be related to this activity; therefore, proneurogenic effects of fluoxetine and other antidepressants, especially in the absence of any behavioral therapeutic effects, should be interpreted with caution.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"158-166"},"PeriodicalIF":2.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9617661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrasound-Induced Prenatal Stress: New Possibilities for Modeling Mental Disorders. 超声诱导的产前应激:模拟精神障碍的新可能性。
IF 2.3 4区 医学
Developmental Neuroscience Pub Date : 2024-01-01 Epub Date: 2023-10-19 DOI: 10.1159/000534687
Olga Abramova, Anna Morozova, Eugene Zubkov, Valeria Ushakova, Yana Zorkina, Andrey T Proshin, Zinaida Storozheva, Olga Gurina, Vladimir Chekhonin
{"title":"Ultrasound-Induced Prenatal Stress: New Possibilities for Modeling Mental Disorders.","authors":"Olga Abramova, Anna Morozova, Eugene Zubkov, Valeria Ushakova, Yana Zorkina, Andrey T Proshin, Zinaida Storozheva, Olga Gurina, Vladimir Chekhonin","doi":"10.1159/000534687","DOIUrl":"10.1159/000534687","url":null,"abstract":"<p><p>The development of animal models of mental disorders is an important task since such models are useful for studying the neurobiological mechanisms of psychopathologies and for trial of new therapeutic drugs. One way to model pathologies of the nervous system is to impair fetal neurodevelopment through stress of the pregnant future mother, or prenatal stress (PS). The use of variable frequency ultrasound (US) in rodents is a promising method of imitating psychological stress, to which women in modern society are most often subjected. The aim of our study was to investigate the effect of PS induced by exposure to variable frequency ultrasound (US PS) throughout the gestational period on the adult rat offspring, namely, to identify features of behavioral alterations and neurochemical brain parameters that can be associated with certain mental disorders in humans, to determine the possibility of creating a new model of psychopathology. Our study included a study of some behavioral characteristics of male and female rats in the elevated plus maze, open-field test, object recognition test, social interaction test, sucrose preference test, latent inhibition test, Morris water maze, forced swimming test, acoustic startle reflex, and prepulse inhibition tests. We also determined the activity of the serotonergic, dopaminergic, and noradrenergic neurotransmitter systems in the hippocampus and frontal cortex by HPLC-ED. Concentration of norepinephrine, dopamine, DOPAC, serotonin, and HIAA, as well as DOPAC/dopamine and HIAA/serotonin ratios were determined. A correlation analysis of behavioral and neurochemical parameters in male and female rats was performed based on the data obtained. The results of the study showed that US PS altered the behavioral phenotype of the rat offspring. US PS increased the level of anxious behavior, impaired orientation-research behavior, increased grooming activity, decreased the desire for social contacts, shifted behavioral reactions from social interaction to interaction with inanimate objects, impaired latent inhibition, and decreased the startle reflex. US PS activated the serotonergic, dopaminergic, and noradrenergic neurotransmitter systems of the rat frontal cortex and hippocampus. A correlation between neurochemical and behavioral parameters was revealed. Our study showed that US PS leads to a certain dysfunction on behavioral and neurochemical levels in rats that is most closely associated with symptoms of schizophrenia or autism. We hypothesize that this could potentially be an indicator of face validity for a model of psychopathology based on neurodevelopmental impairment.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"237-261"},"PeriodicalIF":2.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11251674/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49684538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pain/Stress, Mitochondrial Dysfunction, and Neurodevelopment in Preterm Infants. 早产儿的疼痛/压力、线粒体功能障碍和神经发育。
IF 2.3 4区 医学
Developmental Neuroscience Pub Date : 2024-01-01 Epub Date: 2024-01-29 DOI: 10.1159/000536509
Tingting Zhao, Xiaolin Chang, Subrata Kumar Biswas, Jeremy L Balsbaugh, Jennifer Liddle, Ming-Hui Chen, Adam P Matson, Nathan N Alder, Xiaomei Cong
{"title":"Pain/Stress, Mitochondrial Dysfunction, and Neurodevelopment in Preterm Infants.","authors":"Tingting Zhao, Xiaolin Chang, Subrata Kumar Biswas, Jeremy L Balsbaugh, Jennifer Liddle, Ming-Hui Chen, Adam P Matson, Nathan N Alder, Xiaomei Cong","doi":"10.1159/000536509","DOIUrl":"10.1159/000536509","url":null,"abstract":"<p><strong>Introduction: </strong>Preterm infants experience tremendous early life pain/stress during their neonatal intensive care unit (NICU) hospitalization, which impacts their neurodevelopmental outcomes. Mitochondrial function/dysfunction may interface between perinatal stress events and neurodevelopment. Nevertheless, the specific proteins or pathways linking mitochondrial functions to pain-induced neurodevelopmental outcomes in infants remain unidentified. Our study aims to investigate the associations among pain/stress, proteins associated with mitochondrial function/dysfunction, and neurobehavioral responses in preterm infants.</p><p><strong>Methods: </strong>We conducted a prospective cohort study, enrolling 33 preterm infants between September 2017 and July 2022 at two affiliated NICUs located in Hartford and Farmington, CT. NICU Network Neurobehavioral Scale (NNNS) datasets were evaluated to explore potential association with neurobehavioral outcomes. The daily pain/stress experienced by infant's during their NICU stay was documented. At 36-38 weeks post-menstrual age (PMA), neurobehavioral outcomes were evaluated using the NNNS and buccal swabs were collected for further analysis. Mass spectrometry-based proteomics was conducted on epithelial cells obtained from buccal swabs to evaluate protein expression level. Lasso statistical methods were conducted to study the association between protein abundance and infants' NNNS summary scores. Multiple linear regression and Gene Ontology (GO) enrichment analyses were performed to examine how clinical characteristics and neurodevelopmental outcomes may be associated with protein levels and underlying molecular pathways.</p><p><strong>Results: </strong>During NICU hospitalization, preterm premature rupture of membrane (PPROM) was negatively associated with neurobehavioral outcomes. The protein functions including leptin receptor binding activity, glutathione disulfide oxidoreductase activity and response to oxidative stress, lipid metabolism, and phosphate and proton transmembrane transporter activity were negatively associated with neurobehavioral outcomes; in contrast, cytoskeletal regulation, epithelial barrier, and protection function were found to be associated with the optimal neurodevelopmental outcomes. In addition, mitochondrial function-associated proteins including SPRR2A, PAIP1, S100A3, MT-CO2, PiC, GLRX, PHB2, and BNIPL-2 demonstrated positive association with favorable neurodevelopmental outcomes, while proteins of ABLIM1, UNC45A, keratins, MUC1, and CYB5B showed positive association with adverse neurodevelopmental outcomes.</p><p><strong>Conclusion: </strong>Mitochondrial function-related proteins were observed to be associated with early life pain/stress and neurodevelopmental outcomes in infants. Large-scale studies with longitudinal datasets are warranted. Buccal proteins could be used to predict potential neurobehavioral outcomes.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"341-352"},"PeriodicalIF":2.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11284246/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139577102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of Gene Regulatory Elements in Human Fetal Cortical Development: Enhancing Our Understanding of Neurodevelopmental Disorders and Evolution. 人类胎儿皮层发育中基因调控元件的特征:加强我们对神经发育障碍和进化的理解。
IF 2.9 4区 医学
Developmental Neuroscience Pub Date : 2024-01-01 Epub Date: 2023-05-10 DOI: 10.1159/000530929
Qiuyu Guo, Sarah Wu, Daniel H Geschwind
{"title":"Characterization of Gene Regulatory Elements in Human Fetal Cortical Development: Enhancing Our Understanding of Neurodevelopmental Disorders and Evolution.","authors":"Qiuyu Guo, Sarah Wu, Daniel H Geschwind","doi":"10.1159/000530929","DOIUrl":"10.1159/000530929","url":null,"abstract":"<p><p>The neocortex is the region that most distinguishes human brain from other mammals and primates [Annu Rev Genet. 2021 Nov;55(1):555-81]. Studying the development of human cortex is important in understanding the evolutionary changes occurring in humans relative to other primates, as well as in elucidating mechanisms underlying neurodevelopmental disorders. Cortical development is a highly regulated process, spatially and temporally coordinated by expression of essential transcriptional factors in response to signaling pathways [Neuron. 2019 Sep;103(6):980-1004]. Enhancers are the most well-understood cis-acting, non-protein-coding regulatory elements that regulate gene expression [Nat Rev Genet. 2014 Apr;15(4):272-86]. Importantly, given the conservation of both DNA sequence and molecular function of the majority of proteins across mammals [Genome Res. 2003 Dec;13(12):2507-18], enhancers [Science. 2015 Mar;347(6226):1155-9], which are far more divergent at the sequence level, likely account for the phenotypes that distinguish the human brain by changing the regulation of gene expression. In this review, we will revisit the conceptual framework of gene regulation during human brain development, as well as the evolution of technologies to study transcriptional regulation, with recent advances in genome biology that open a window allowing us to systematically characterize cis-regulatory elements in developing human brain [Hum Mol Genet. 2022 Oct;31(R1):R84-96]. We provide an update on work to characterize the suite of all enhancers in the developing human brain and the implications for understanding neuropsychiatric disorders. Finally, we discuss emerging therapeutic ideas that utilize our emerging knowledge of enhancer function.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"69-83"},"PeriodicalIF":2.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9876673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Brain Injury Outcomes after Adjuvant Erythropoietin Neuroprotection for Moderate or Severe Neonatal Hypoxic-Ischemic Encephalopathy: A Report from the HEAL Trial. 辅助促红细胞生成素神经保护治疗中度或重度新生儿缺氧缺血性脑病后的脑损伤结果:HEAL试验报告。
IF 2.3 4区 医学
Developmental Neuroscience Pub Date : 2024-01-01 Epub Date: 2023-10-31 DOI: 10.1159/000534618
Jessica L Wisnowski, Sarah E Monsell, Stefan Bluml, Amy M Goodman, Yi Li, Bryan A Comstock, Patrick J Heagerty, Sandra E Juul, Yvonne W Wu, Robert C McKinstry, Amit M Mathur
{"title":"Brain Injury Outcomes after Adjuvant Erythropoietin Neuroprotection for Moderate or Severe Neonatal Hypoxic-Ischemic Encephalopathy: A Report from the HEAL Trial.","authors":"Jessica L Wisnowski, Sarah E Monsell, Stefan Bluml, Amy M Goodman, Yi Li, Bryan A Comstock, Patrick J Heagerty, Sandra E Juul, Yvonne W Wu, Robert C McKinstry, Amit M Mathur","doi":"10.1159/000534618","DOIUrl":"10.1159/000534618","url":null,"abstract":"<p><strong>Introduction: </strong>Erythropoietin (Epo) is a putative neuroprotective therapy that did not improve overall outcomes in a phase 3 randomized controlled trial for neonates with moderate or severe hypoxic-ischemic encephalopathy (HIE). However, HIE is a heterogeneous disorder, and it remains to be determined whether Epo had beneficial effects on a subset of perinatal brain injuries.</p><p><strong>Methods: </strong>This study was a secondary analysis of neuroimaging data from the High-dose Erythropoietin for Asphyxia and Encephalopathy (HEAL) Trial, which was conducted from 2016 to 2021 at 17 sites involving 23 US academic medical centers. Participants were neonates &gt;36 weeks' gestation undergoing therapeutic hypothermia for moderate or severe HIE who received 5 doses of study drug (Epoetin alpha 1,000 U/kg/dose) or placebo in the first week of life. Treatment assignment was stratified by trial site and severity of encephalopathy. The primary outcome was the locus, pattern, and acuity of brain injury as determined by three independent readers using a validated HIE Magnetic Resonance Imaging (MRI) scoring system.</p><p><strong>Results: </strong>Of the 500 infants enrolled in HEAL, 470 (94%) had high quality MRI data obtained at a median of 4.9 days of age (IQR: 4.5-5.8). The incidence of injury to the deep gray nuclei, cortex, white matter, brainstem and cerebellum was similar between Epo and placebo groups. Likewise, the distribution of injury patterns was similar between groups. Among infants imaged at less than 8 days (n = 414), 94 (23%) evidenced only acute, 93 (22%) only subacute and 89 (21%) both acute and subacute injuries, with similar distribution across treatment groups.</p><p><strong>Conclusion: </strong>Adjuvant erythropoietin did not reduce the incidence of regional brain injury. Subacute brain injury was more common than previously reported, which has key implications for the development of adjuvant neuroprotective therapies for this population.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"285-296"},"PeriodicalIF":2.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11249061/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71428702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blood Biomarkers in the Fetally Growth Restricted and Small for Gestational Age Neonate: Associations with Brain Injury. 胎儿生长受限和胎龄小新生儿的血液生物标志物:与脑损伤的关系
IF 2.9 4区 医学
Developmental Neuroscience Pub Date : 2024-01-01 Epub Date: 2023-05-10 DOI: 10.1159/000530492
Hannah Musco, Kate Beecher, Kirat K Chand, Paul B Colditz, Julie A Wixey
{"title":"Blood Biomarkers in the Fetally Growth Restricted and Small for Gestational Age Neonate: Associations with Brain Injury.","authors":"Hannah Musco, Kate Beecher, Kirat K Chand, Paul B Colditz, Julie A Wixey","doi":"10.1159/000530492","DOIUrl":"10.1159/000530492","url":null,"abstract":"<p><p>Fetal growth restriction (FGR) and small for gestational age (SGA) infants have increased risk of mortality and morbidity. Although both FGR and SGA infants have low birthweights for gestational age, a diagnosis of FGR also requires assessments of umbilical artery Doppler, physiological determinants, neonatal features of malnutrition, and in utero growth retardation. Both FGR and SGA are associated with adverse neurodevelopmental outcomes ranging from learning and behavioral difficulties to cerebral palsy. Up to 50% of FGR, newborns are not diagnosed until around the time of birth, yet this diagnosis lacks further indication of the risk of brain injury or adverse neurodevelopmental outcomes. Blood biomarkers may be a promising tool. Defining blood biomarkers indicating an infant's risk of brain injury would provide the opportunity for early detection and therefore earlier support. The aim of this review was to summarize the current literature to assist in guiding the future direction for the early detection of adverse brain outcomes in FGR and SGA neonates. The studies investigated potential diagnostic blood biomarkers from cord and neonatal blood or serum from FGR and SGA human neonates. Results were often conflicting with heterogeneity common in the biomarkers examined, timepoints, gestational age, and definitions of FGR and SGA used. Due to these variations, it was difficult to draw strong conclusions from the results. The search for blood biomarkers of brain injury in FGR and SGA neonates should continue as early detection and intervention is critical to improve outcomes for these neonates.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"84-97"},"PeriodicalIF":2.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9515125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantification of Diffusion Magnetic Resonance Imaging for Prognostic Prediction of Neonatal Hypoxic-Ischemic Encephalopathy. 弥散核磁共振成像定量预测新生儿缺氧缺血性脑病的预后。
IF 2.3 4区 医学
Developmental Neuroscience Pub Date : 2024-01-01 Epub Date: 2023-05-10 DOI: 10.1159/000530938
Kengo Onda, Raul Chavez-Valdez, Ernest M Graham, Allen D Everett, Frances J Northington, Kenichi Oishi
{"title":"Quantification of Diffusion Magnetic Resonance Imaging for Prognostic Prediction of Neonatal Hypoxic-Ischemic Encephalopathy.","authors":"Kengo Onda, Raul Chavez-Valdez, Ernest M Graham, Allen D Everett, Frances J Northington, Kenichi Oishi","doi":"10.1159/000530938","DOIUrl":"10.1159/000530938","url":null,"abstract":"<p><p>Neonatal hypoxic-ischemic encephalopathy (HIE) is the leading cause of acquired neonatal brain injury with the risk of developing serious neurological sequelae and death. An accurate and robust prediction of short- and long-term outcomes may provide clinicians and families with fundamental evidence for their decision-making, the design of treatment strategies, and the discussion of developmental intervention plans after discharge. Diffusion tensor imaging (DTI) is one of the most powerful neuroimaging tools with which to predict the prognosis of neonatal HIE by providing microscopic features that cannot be assessed by conventional magnetic resonance imaging (MRI). DTI provides various scalar measures that represent the properties of the tissue, such as fractional anisotropy (FA) and mean diffusivity (MD). Since the characteristics of the diffusion of water molecules represented by these measures are affected by the microscopic cellular and extracellular environment, such as the orientation of structural components and cell density, they are often used to study the normal developmental trajectory of the brain and as indicators of various tissue damage, including HIE-related pathologies, such as cytotoxic edema, vascular edema, inflammation, cell death, and Wallerian degeneration. Previous studies have demonstrated widespread alteration in DTI measurements in severe cases of HIE and more localized changes in neonates with mild-to-moderate HIE. In an attempt to establish cutoff values to predict the occurrence of neurological sequelae, MD and FA measurements in the corpus callosum, thalamus, basal ganglia, corticospinal tract, and frontal white matter have proven to have an excellent ability to predict severe neurological outcomes. In addition, a recent study has suggested that a data-driven, unbiased approach using machine learning techniques on features obtained from whole-brain image quantification may accurately predict the prognosis of HIE, including for mild-to-moderate cases. Further efforts are needed to overcome current challenges, such as MRI infrastructure, diffusion modeling methods, and data harmonization for clinical application. In addition, external validation of predictive models is essential for clinical application of DTI to prognostication.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"55-68"},"PeriodicalIF":2.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10712961/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9521910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disrupted Small-World Networks in Children with Drug-Naïve Attention-Deficit/Hyperactivity Disorder: A DTI-Based Network Analysis. 药物治疗无效的注意力缺陷/多动障碍儿童的小世界网络紊乱:基于 DTI 的网络分析
IF 2.9 4区 医学
Developmental Neuroscience Pub Date : 2024-01-01 Epub Date: 2023-08-02 DOI: 10.1159/000533128
Liuhui Wu, Shu Su, Yan Dai, Huaqiong Qiu, Liping Lin, Mengsha Zou, Long Qian, Meina Liu, Hongyu Zhang, Yingqian Chen, Zhiyun Yang
{"title":"Disrupted Small-World Networks in Children with Drug-Naïve Attention-Deficit/Hyperactivity Disorder: A DTI-Based Network Analysis.","authors":"Liuhui Wu, Shu Su, Yan Dai, Huaqiong Qiu, Liping Lin, Mengsha Zou, Long Qian, Meina Liu, Hongyu Zhang, Yingqian Chen, Zhiyun Yang","doi":"10.1159/000533128","DOIUrl":"10.1159/000533128","url":null,"abstract":"<p><p>Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders, while the potential neurological mechanisms are poorly understood. To explore the alterations in the white matter (WM) structural connectome in children with drug-naïve ADHD, forty-nine ADHD and 51 age- and gender-matched typically developing (TD) children aged 6-14 years were enrolled. WM structural connectivity based on deterministic diffusion tensor imaging (DTI) was constructed in 90 cortical and subcortical regions, and topological parameters of the resulting graphs were calculated. Network metrics were compared between two groups. The concentration index and the total cancellation test scores of digit cancellation test were used to evaluate clinical symptom severity in ADHD. Then, a partial correlation analysis was performed to explore the relationship between significant topologic metrics and clinical symptom severity. Compared to TD group, ADHD showed an increase in the characteristic path length (Lp), normalized clustering coefficient (γ), small worldness (σ), and a decrease in the global efficiency (Eglob) (all p &lt; 0.05). Furthermore, ADHD showed reduced nodal centralities mainly in the regions of default mode network (DMN), central executive network (CEN), basal ganglia, and bilateral thalamus (all p &lt; 0.05). After performing Benjamini-Hochberg's procedure, only the left orbital part of superior frontal gyrus and the left caudate were statistically significant (p &lt; 0.05, FDR-corrected). In addition, the concentration index of ADHD was negatively correlated with the nodal betweenness of the left orbital part of the middle frontal gyrus (r = -0.302, p = 0.042). Our findings revealed an ADHD-related shift of WM network topology toward \"regularization\" pattern, characterized by decreased global network integration, which is also reflected by changed nodal centralities involving DMN, CEN, basal ganglia, and bilateral thalamus. ADHD could be understood by examining the dysfunction of large-scale spatially distributed neural networks.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"201-209"},"PeriodicalIF":2.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9981242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
miR-26a Improves Microglial Activation and Neuronal Apoptosis in a Rat Model of Cerebral Infarction by Regulating the TREM1-TLR4/MyD88/NF-κB Axis. miR-26a 通过调节 TREM1-TLR4/MyD88/NF-κB 轴改善脑梗死大鼠模型中的小胶质细胞活化和神经元凋亡
IF 2.3 4区 医学
Developmental Neuroscience Pub Date : 2024-01-01 Epub Date: 2023-09-13 DOI: 10.1159/000533813
Daxiong Xu, Qi'an Guo
{"title":"miR-26a Improves Microglial Activation and Neuronal Apoptosis in a Rat Model of Cerebral Infarction by Regulating the TREM1-TLR4/MyD88/NF-κB Axis.","authors":"Daxiong Xu, Qi'an Guo","doi":"10.1159/000533813","DOIUrl":"10.1159/000533813","url":null,"abstract":"<p><p>Emerging studies have indicated that abnormally expressed microRNAs (miRNAs) are related to the pathogenesis of cerebral ischemia. Nevertheless, the function of miR-26a in neuronal damage and microglial activation during cerebral infarction remains elusive. It was revealed that miR-26a was downregulated in oxygen-glucose deprivation (OGD)-treated microglia and neurons. Overexpressing miR-26a reduced the inflammatory reaction in BV2 cells and decreased neuronal apoptosis following OGD stimulation. miR-26a upregulation inactivated the TLR4/MyD88/NF-κB pathway and inhibited TREM1 expression. Repressing NF-κB phosphorylation inhibited the miR-26a level. As supported by the dual-luciferase reporter assay, TREM1 was directly targeted by miR-26a. Furthermore, a rat model of middle cerebral artery occlusion (MCAO) was built. We discovered that miR-26a improved cognitive, learning, and motor functions and reduced cerebral edema in MCAO rats. Mechanistically, upregulating miR-26a reduced inflammation and neuronal apoptosis by mitigating the TREM1-TLR4/MyD88/NF-κB pathway in the MCAO rat model. Collectively, this study verified that the miR-26a-TREM1-TLR4/MyD88/NF-κB axis contributes to modulating OGD-mediated microglial activation and neuronal injury.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"221-236"},"PeriodicalIF":2.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10228901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信