Developmental Neuroscience最新文献

筛选
英文 中文
Ultrasound-Induced Prenatal Stress: New Possibilities for Modeling Mental Disorders. 超声诱导的产前应激:模拟精神障碍的新可能性。
IF 2.3 4区 医学
Developmental Neuroscience Pub Date : 2024-01-01 Epub Date: 2023-10-19 DOI: 10.1159/000534687
Olga Abramova, Anna Morozova, Eugene Zubkov, Valeria Ushakova, Yana Zorkina, Andrey T Proshin, Zinaida Storozheva, Olga Gurina, Vladimir Chekhonin
{"title":"Ultrasound-Induced Prenatal Stress: New Possibilities for Modeling Mental Disorders.","authors":"Olga Abramova, Anna Morozova, Eugene Zubkov, Valeria Ushakova, Yana Zorkina, Andrey T Proshin, Zinaida Storozheva, Olga Gurina, Vladimir Chekhonin","doi":"10.1159/000534687","DOIUrl":"10.1159/000534687","url":null,"abstract":"<p><p>The development of animal models of mental disorders is an important task since such models are useful for studying the neurobiological mechanisms of psychopathologies and for trial of new therapeutic drugs. One way to model pathologies of the nervous system is to impair fetal neurodevelopment through stress of the pregnant future mother, or prenatal stress (PS). The use of variable frequency ultrasound (US) in rodents is a promising method of imitating psychological stress, to which women in modern society are most often subjected. The aim of our study was to investigate the effect of PS induced by exposure to variable frequency ultrasound (US PS) throughout the gestational period on the adult rat offspring, namely, to identify features of behavioral alterations and neurochemical brain parameters that can be associated with certain mental disorders in humans, to determine the possibility of creating a new model of psychopathology. Our study included a study of some behavioral characteristics of male and female rats in the elevated plus maze, open-field test, object recognition test, social interaction test, sucrose preference test, latent inhibition test, Morris water maze, forced swimming test, acoustic startle reflex, and prepulse inhibition tests. We also determined the activity of the serotonergic, dopaminergic, and noradrenergic neurotransmitter systems in the hippocampus and frontal cortex by HPLC-ED. Concentration of norepinephrine, dopamine, DOPAC, serotonin, and HIAA, as well as DOPAC/dopamine and HIAA/serotonin ratios were determined. A correlation analysis of behavioral and neurochemical parameters in male and female rats was performed based on the data obtained. The results of the study showed that US PS altered the behavioral phenotype of the rat offspring. US PS increased the level of anxious behavior, impaired orientation-research behavior, increased grooming activity, decreased the desire for social contacts, shifted behavioral reactions from social interaction to interaction with inanimate objects, impaired latent inhibition, and decreased the startle reflex. US PS activated the serotonergic, dopaminergic, and noradrenergic neurotransmitter systems of the rat frontal cortex and hippocampus. A correlation between neurochemical and behavioral parameters was revealed. Our study showed that US PS leads to a certain dysfunction on behavioral and neurochemical levels in rats that is most closely associated with symptoms of schizophrenia or autism. We hypothesize that this could potentially be an indicator of face validity for a model of psychopathology based on neurodevelopmental impairment.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11251674/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49684538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fluoxetine Can Cause Epileptogenesis and Aberrant Neurogenesis in Male Wild-Type Mice. 氟西汀会导致雄性野生型小鼠癫痫发生和神经发生异常
IF 2.9 4区 医学
Developmental Neuroscience Pub Date : 2024-01-01 Epub Date: 2023-06-09 DOI: 10.1159/000531478
Ksenia Musaelyan, Mark A Horowitz, Stephen McHugh, Francis G Szele
{"title":"Fluoxetine Can Cause Epileptogenesis and Aberrant Neurogenesis in Male Wild-Type Mice.","authors":"Ksenia Musaelyan, Mark A Horowitz, Stephen McHugh, Francis G Szele","doi":"10.1159/000531478","DOIUrl":"10.1159/000531478","url":null,"abstract":"<p><p>Antidepressants in general, and fluoxetine in particular, increase adult hippocampal neurogenesis (AHN) in mice. Here we asked how the antidepressant fluoxetine affects behavior and AHN in a corticosterone model of depression. In three groups of adult male C57BL/6j mice, we administered either vehicle (VEH), corticosterone (CORT) treatment to induce a depression-like state, or corticosterone plus a standard dose of fluoxetine (CORT+FLX). Following treatment, mice performed the open field test, the novelty suppressed feeding (NSF) test, and the splash test. Neurogenesis was assessed by means of immunohistochemistry using BrdU and neuronal maturation markers. Unexpectedly, 42% of the CORT+FLX-treated mice exhibited severe weight loss, seizures, and sudden death. As expected, the CORT-treated group had altered behaviors compared to the VEH group, but the CORT+FLX mice that survived did not show any behavioral improvement compared to the CORT group. Antidepressants generally increase neurogenesis and here we also found that compared to CORT mice, CORT+FLX mice that survived had a significantly greater density of BrdU+, BrdU+DCX+, and BrdU+NeuN+ cells, suggesting increased neurogenesis. Moreover, the density of BrdU+NeuN+ cells was increased in an aberrant location, the hilus, of CORT+FLX mice, similar to previous studies describing aberrant neurogenesis following seizures. In conclusion, fluoxetine could induce considerable adverse effects in wild-type mice, including seizure-like activity. Fluoxetine-induced neurogenesis increases could be related to this activity; therefore, proneurogenic effects of fluoxetine and other antidepressants, especially in the absence of any behavioral therapeutic effects, should be interpreted with caution.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9617661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of Gene Regulatory Elements in Human Fetal Cortical Development: Enhancing Our Understanding of Neurodevelopmental Disorders and Evolution. 人类胎儿皮层发育中基因调控元件的特征:加强我们对神经发育障碍和进化的理解。
IF 2.9 4区 医学
Developmental Neuroscience Pub Date : 2024-01-01 Epub Date: 2023-05-10 DOI: 10.1159/000530929
Qiuyu Guo, Sarah Wu, Daniel H Geschwind
{"title":"Characterization of Gene Regulatory Elements in Human Fetal Cortical Development: Enhancing Our Understanding of Neurodevelopmental Disorders and Evolution.","authors":"Qiuyu Guo, Sarah Wu, Daniel H Geschwind","doi":"10.1159/000530929","DOIUrl":"10.1159/000530929","url":null,"abstract":"<p><p>The neocortex is the region that most distinguishes human brain from other mammals and primates [Annu Rev Genet. 2021 Nov;55(1):555-81]. Studying the development of human cortex is important in understanding the evolutionary changes occurring in humans relative to other primates, as well as in elucidating mechanisms underlying neurodevelopmental disorders. Cortical development is a highly regulated process, spatially and temporally coordinated by expression of essential transcriptional factors in response to signaling pathways [Neuron. 2019 Sep;103(6):980-1004]. Enhancers are the most well-understood cis-acting, non-protein-coding regulatory elements that regulate gene expression [Nat Rev Genet. 2014 Apr;15(4):272-86]. Importantly, given the conservation of both DNA sequence and molecular function of the majority of proteins across mammals [Genome Res. 2003 Dec;13(12):2507-18], enhancers [Science. 2015 Mar;347(6226):1155-9], which are far more divergent at the sequence level, likely account for the phenotypes that distinguish the human brain by changing the regulation of gene expression. In this review, we will revisit the conceptual framework of gene regulation during human brain development, as well as the evolution of technologies to study transcriptional regulation, with recent advances in genome biology that open a window allowing us to systematically characterize cis-regulatory elements in developing human brain [Hum Mol Genet. 2022 Oct;31(R1):R84-96]. We provide an update on work to characterize the suite of all enhancers in the developing human brain and the implications for understanding neuropsychiatric disorders. Finally, we discuss emerging therapeutic ideas that utilize our emerging knowledge of enhancer function.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9876673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blood Biomarkers in the Fetally Growth Restricted and Small for Gestational Age Neonate: Associations with Brain Injury. 胎儿生长受限和胎龄小新生儿的血液生物标志物:与脑损伤的关系
IF 2.9 4区 医学
Developmental Neuroscience Pub Date : 2024-01-01 Epub Date: 2023-05-10 DOI: 10.1159/000530492
Hannah Musco, Kate Beecher, Kirat K Chand, Paul B Colditz, Julie A Wixey
{"title":"Blood Biomarkers in the Fetally Growth Restricted and Small for Gestational Age Neonate: Associations with Brain Injury.","authors":"Hannah Musco, Kate Beecher, Kirat K Chand, Paul B Colditz, Julie A Wixey","doi":"10.1159/000530492","DOIUrl":"10.1159/000530492","url":null,"abstract":"<p><p>Fetal growth restriction (FGR) and small for gestational age (SGA) infants have increased risk of mortality and morbidity. Although both FGR and SGA infants have low birthweights for gestational age, a diagnosis of FGR also requires assessments of umbilical artery Doppler, physiological determinants, neonatal features of malnutrition, and in utero growth retardation. Both FGR and SGA are associated with adverse neurodevelopmental outcomes ranging from learning and behavioral difficulties to cerebral palsy. Up to 50% of FGR, newborns are not diagnosed until around the time of birth, yet this diagnosis lacks further indication of the risk of brain injury or adverse neurodevelopmental outcomes. Blood biomarkers may be a promising tool. Defining blood biomarkers indicating an infant's risk of brain injury would provide the opportunity for early detection and therefore earlier support. The aim of this review was to summarize the current literature to assist in guiding the future direction for the early detection of adverse brain outcomes in FGR and SGA neonates. The studies investigated potential diagnostic blood biomarkers from cord and neonatal blood or serum from FGR and SGA human neonates. Results were often conflicting with heterogeneity common in the biomarkers examined, timepoints, gestational age, and definitions of FGR and SGA used. Due to these variations, it was difficult to draw strong conclusions from the results. The search for blood biomarkers of brain injury in FGR and SGA neonates should continue as early detection and intervention is critical to improve outcomes for these neonates.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9515125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disrupted Small-World Networks in Children with Drug-Naïve Attention-Deficit/Hyperactivity Disorder: A DTI-Based Network Analysis. 药物治疗无效的注意力缺陷/多动障碍儿童的小世界网络紊乱:基于 DTI 的网络分析
IF 2.9 4区 医学
Developmental Neuroscience Pub Date : 2024-01-01 Epub Date: 2023-08-02 DOI: 10.1159/000533128
Liuhui Wu, Shu Su, Yan Dai, Huaqiong Qiu, Liping Lin, Mengsha Zou, Long Qian, Meina Liu, Hongyu Zhang, Yingqian Chen, Zhiyun Yang
{"title":"Disrupted Small-World Networks in Children with Drug-Naïve Attention-Deficit/Hyperactivity Disorder: A DTI-Based Network Analysis.","authors":"Liuhui Wu, Shu Su, Yan Dai, Huaqiong Qiu, Liping Lin, Mengsha Zou, Long Qian, Meina Liu, Hongyu Zhang, Yingqian Chen, Zhiyun Yang","doi":"10.1159/000533128","DOIUrl":"10.1159/000533128","url":null,"abstract":"<p><p>Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders, while the potential neurological mechanisms are poorly understood. To explore the alterations in the white matter (WM) structural connectome in children with drug-naïve ADHD, forty-nine ADHD and 51 age- and gender-matched typically developing (TD) children aged 6-14 years were enrolled. WM structural connectivity based on deterministic diffusion tensor imaging (DTI) was constructed in 90 cortical and subcortical regions, and topological parameters of the resulting graphs were calculated. Network metrics were compared between two groups. The concentration index and the total cancellation test scores of digit cancellation test were used to evaluate clinical symptom severity in ADHD. Then, a partial correlation analysis was performed to explore the relationship between significant topologic metrics and clinical symptom severity. Compared to TD group, ADHD showed an increase in the characteristic path length (Lp), normalized clustering coefficient (γ), small worldness (σ), and a decrease in the global efficiency (Eglob) (all p &lt; 0.05). Furthermore, ADHD showed reduced nodal centralities mainly in the regions of default mode network (DMN), central executive network (CEN), basal ganglia, and bilateral thalamus (all p &lt; 0.05). After performing Benjamini-Hochberg's procedure, only the left orbital part of superior frontal gyrus and the left caudate were statistically significant (p &lt; 0.05, FDR-corrected). In addition, the concentration index of ADHD was negatively correlated with the nodal betweenness of the left orbital part of the middle frontal gyrus (r = -0.302, p = 0.042). Our findings revealed an ADHD-related shift of WM network topology toward \"regularization\" pattern, characterized by decreased global network integration, which is also reflected by changed nodal centralities involving DMN, CEN, basal ganglia, and bilateral thalamus. ADHD could be understood by examining the dysfunction of large-scale spatially distributed neural networks.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9981242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
miR-26a Improves Microglial Activation and Neuronal Apoptosis in a Rat Model of Cerebral Infarction by Regulating the TREM1-TLR4/MyD88/NF-κB Axis. miR-26a 通过调节 TREM1-TLR4/MyD88/NF-κB 轴改善脑梗死大鼠模型中的小胶质细胞活化和神经元凋亡
IF 2.3 4区 医学
Developmental Neuroscience Pub Date : 2024-01-01 Epub Date: 2023-09-13 DOI: 10.1159/000533813
Daxiong Xu, Qi'an Guo
{"title":"miR-26a Improves Microglial Activation and Neuronal Apoptosis in a Rat Model of Cerebral Infarction by Regulating the TREM1-TLR4/MyD88/NF-κB Axis.","authors":"Daxiong Xu, Qi'an Guo","doi":"10.1159/000533813","DOIUrl":"10.1159/000533813","url":null,"abstract":"<p><p>Emerging studies have indicated that abnormally expressed microRNAs (miRNAs) are related to the pathogenesis of cerebral ischemia. Nevertheless, the function of miR-26a in neuronal damage and microglial activation during cerebral infarction remains elusive. It was revealed that miR-26a was downregulated in oxygen-glucose deprivation (OGD)-treated microglia and neurons. Overexpressing miR-26a reduced the inflammatory reaction in BV2 cells and decreased neuronal apoptosis following OGD stimulation. miR-26a upregulation inactivated the TLR4/MyD88/NF-κB pathway and inhibited TREM1 expression. Repressing NF-κB phosphorylation inhibited the miR-26a level. As supported by the dual-luciferase reporter assay, TREM1 was directly targeted by miR-26a. Furthermore, a rat model of middle cerebral artery occlusion (MCAO) was built. We discovered that miR-26a improved cognitive, learning, and motor functions and reduced cerebral edema in MCAO rats. Mechanistically, upregulating miR-26a reduced inflammation and neuronal apoptosis by mitigating the TREM1-TLR4/MyD88/NF-κB pathway in the MCAO rat model. Collectively, this study verified that the miR-26a-TREM1-TLR4/MyD88/NF-κB axis contributes to modulating OGD-mediated microglial activation and neuronal injury.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10228901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantification of Diffusion Magnetic Resonance Imaging for Prognostic Prediction of Neonatal Hypoxic-Ischemic Encephalopathy. 弥散核磁共振成像定量预测新生儿缺氧缺血性脑病的预后。
IF 2.9 4区 医学
Developmental Neuroscience Pub Date : 2024-01-01 Epub Date: 2023-05-10 DOI: 10.1159/000530938
Kengo Onda, Raul Chavez-Valdez, Ernest M Graham, Allen D Everett, Frances J Northington, Kenichi Oishi
{"title":"Quantification of Diffusion Magnetic Resonance Imaging for Prognostic Prediction of Neonatal Hypoxic-Ischemic Encephalopathy.","authors":"Kengo Onda, Raul Chavez-Valdez, Ernest M Graham, Allen D Everett, Frances J Northington, Kenichi Oishi","doi":"10.1159/000530938","DOIUrl":"10.1159/000530938","url":null,"abstract":"<p><p>Neonatal hypoxic-ischemic encephalopathy (HIE) is the leading cause of acquired neonatal brain injury with the risk of developing serious neurological sequelae and death. An accurate and robust prediction of short- and long-term outcomes may provide clinicians and families with fundamental evidence for their decision-making, the design of treatment strategies, and the discussion of developmental intervention plans after discharge. Diffusion tensor imaging (DTI) is one of the most powerful neuroimaging tools with which to predict the prognosis of neonatal HIE by providing microscopic features that cannot be assessed by conventional magnetic resonance imaging (MRI). DTI provides various scalar measures that represent the properties of the tissue, such as fractional anisotropy (FA) and mean diffusivity (MD). Since the characteristics of the diffusion of water molecules represented by these measures are affected by the microscopic cellular and extracellular environment, such as the orientation of structural components and cell density, they are often used to study the normal developmental trajectory of the brain and as indicators of various tissue damage, including HIE-related pathologies, such as cytotoxic edema, vascular edema, inflammation, cell death, and Wallerian degeneration. Previous studies have demonstrated widespread alteration in DTI measurements in severe cases of HIE and more localized changes in neonates with mild-to-moderate HIE. In an attempt to establish cutoff values to predict the occurrence of neurological sequelae, MD and FA measurements in the corpus callosum, thalamus, basal ganglia, corticospinal tract, and frontal white matter have proven to have an excellent ability to predict severe neurological outcomes. In addition, a recent study has suggested that a data-driven, unbiased approach using machine learning techniques on features obtained from whole-brain image quantification may accurately predict the prognosis of HIE, including for mild-to-moderate cases. Further efforts are needed to overcome current challenges, such as MRI infrastructure, diffusion modeling methods, and data harmonization for clinical application. In addition, external validation of predictive models is essential for clinical application of DTI to prognostication.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10712961/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9521910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuroprotective Effects of Delayed TGF-β1 Receptor Antagonist Administration on Perinatal Hypoxic-Ischemic Brain Injury. 延迟服用 TGF-β1 受体拮抗剂对围产期缺氧缺血性脑损伤的神经保护作用
IF 2.9 4区 医学
Developmental Neuroscience Pub Date : 2024-01-01 Epub Date: 2023-06-22 DOI: 10.1159/000531650
Hur Dolunay Kanal, Steven W Levison
{"title":"Neuroprotective Effects of Delayed TGF-β1 Receptor Antagonist Administration on Perinatal Hypoxic-Ischemic Brain Injury.","authors":"Hur Dolunay Kanal, Steven W Levison","doi":"10.1159/000531650","DOIUrl":"10.1159/000531650","url":null,"abstract":"<p><p>Hypoxic-ischemic (HI) brain injury in neonatal encephalopathy triggers a wave of neuroinflammatory events attributed to causing the progressive degeneration and functional deficits seen weeks after the primary damage. The cellular processes mediating this prolonged neurodegeneration in HI injury are not sufficiently understood. Consequently, current therapies are not fully protective. In a recent study, we found significant improvements in neurologic outcomes when a small molecule antagonist for activin-like kinase 5 (ALK5), a transforming growth factor beta (TGF-β) receptor was used as a therapeutic in a rat model of moderate term HI. Here, we have extended those studies to a mouse preterm pup model of HI. For these studies, postnatal day 7 CD1 mice of both sexes were exposed to 35-40 min of HI. Beginning 3 days later, SB505124, the ALK5 receptor antagonist, was administered systemically through intraperitoneal injections performed every 12 h for 5 days. When evaluated 23 days later, SB505124-treated mice had ∼2.5-fold more hippocampal area and ∼2-fold more thalamic tissue. Approximately 90% of the ipsilateral hemisphere (ILH) was preserved in the SB505124-treated HI mice compared to the vehicle-treated HI mice, where the ILH was ∼60% of its normal size. SB505124 also preserved the subcortical white matter. SB505124 treatment preserved levels of aquaporin-4 and n-cadherin, key proteins associated with blood-brain barrier function. Importantly, SB505124 administration improved sensorimotor function as assessed by a battery of behavioral tests. Altogether, these data lend additional support to the conclusion that SB505124 is a candidate neuroprotective molecule that could be an effective treatment for HI-related encephalopathy in moderately injured preterm infants.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9677286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New Insights into the Developmental Neurobiology of Brain Tumors. 脑肿瘤发育神经生物学的新见解。
IF 2.9 4区 医学
Developmental Neuroscience Pub Date : 2024-01-01 Epub Date: 2023-09-18 DOI: 10.1159/000533817
Timothy N Phoenix
{"title":"New Insights into the Developmental Neurobiology of Brain Tumors.","authors":"Timothy N Phoenix","doi":"10.1159/000533817","DOIUrl":"10.1159/000533817","url":null,"abstract":"","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10673054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum. 勘误表。
IF 2.9 4区 医学
Developmental Neuroscience Pub Date : 2024-01-01 Epub Date: 2023-10-24 DOI: 10.1159/000534556
{"title":"Erratum.","authors":"","doi":"10.1159/000534556","DOIUrl":"10.1159/000534556","url":null,"abstract":"","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50159188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信