小鼠Emx1和Emx2慢病毒转染鸡胚脑及其对羊膜组织和进化的影响。

IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY
Rui Zhao, Yuanyuan Gao, Chao Xi, Ping Liu, Shiying Lin, Shan Lu, Jin Liu, Jie Bing, Xinwen Zhang, Shaoju Zeng
{"title":"小鼠Emx1和Emx2慢病毒转染鸡胚脑及其对羊膜组织和进化的影响。","authors":"Rui Zhao, Yuanyuan Gao, Chao Xi, Ping Liu, Shiying Lin, Shan Lu, Jin Liu, Jie Bing, Xinwen Zhang, Shaoju Zeng","doi":"10.1159/000543601","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Homeobox genes are highly conserved and play critical roles in brain development. Recently, we have found that mammals have an additional fragment of approximately 20 amino acids in Emx1 and a poly-(AL)6-7 in Emx2, compared to other amniotes. It has been shown that Emx1 and Emx2 have synergistic actions in the brain development. These reports raise an interesting issue whether the differences of Emx1 and Emx2 between mammals and non-mammals are concerned with the organization and evolution of amniote pallium.</p><p><strong>Methods: </strong>Lentiviruses expressing mouse Emx1 and Emx2 (mEmx1/2) with additional fragments were injected into the ventricle of the chick telencephalon at embryonic day 3 to study the effects of mEmx1/2 on the development of chick pallium, whereas injections of lentiviruses containing chick Emx1 and Emx2 (cEmx1/2), no targeted gene insert or saline were as controls. The expressions of reelin, vimentin, GABA and MAP2, neurogenesis patterns for calbindin (CB) and parvalbumin (PV) neurons and the sizes of anterior commissure (AC) were then studied by immuohistochemical staining, and open-field tests were performed to assess locomotor activities and curious or exploratory behaviors of the chicks.</p><p><strong>Results: </strong>Following the injections of lentiviruses expressing mEmx1/2, the expressions of reelin, vimentin, GABA, and MAP2 increased in most parts of Wulst (W) and mesopallium (M), but not most of nidopallium (N). Neurogenesis patterns for CB and PV neurons changed toward mammalian inside-out one, and the sizes of AC staining for neurofilament were significantly larger. In addition, post-hatchling chicks showed higher rates of passive avoidance after training, but no significant differences in the total distance traveled and the percentage of time spent in the central rectangle, compared to those in the control groups.</p><p><strong>Conclusion: </strong>The present study indicated that mEmx1/2 had effects on the development of chick pallium, suggesting that they are probably involved in the organization and evolution of amniote pallium.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"1-18"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transferring Mouse Emx1 and Emx2 Lentiviruses into the Chicken Embryonic Brain and Their Implication to the Organization and Evolution of the Amniote Pallium.\",\"authors\":\"Rui Zhao, Yuanyuan Gao, Chao Xi, Ping Liu, Shiying Lin, Shan Lu, Jin Liu, Jie Bing, Xinwen Zhang, Shaoju Zeng\",\"doi\":\"10.1159/000543601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Homeobox genes are highly conserved and play critical roles in brain development. Recently, we have found that mammals have an additional fragment of approximately 20 amino acids in Emx1 and a poly-(AL)6-7 in Emx2, compared to other amniotes. It has been shown that Emx1 and Emx2 have synergistic actions in the brain development. These reports raise an interesting issue whether the differences of Emx1 and Emx2 between mammals and non-mammals are concerned with the organization and evolution of amniote pallium.</p><p><strong>Methods: </strong>Lentiviruses expressing mouse Emx1 and Emx2 (mEmx1/2) with additional fragments were injected into the ventricle of the chick telencephalon at embryonic day 3 to study the effects of mEmx1/2 on the development of chick pallium, whereas injections of lentiviruses containing chick Emx1 and Emx2 (cEmx1/2), no targeted gene insert or saline were as controls. The expressions of reelin, vimentin, GABA and MAP2, neurogenesis patterns for calbindin (CB) and parvalbumin (PV) neurons and the sizes of anterior commissure (AC) were then studied by immuohistochemical staining, and open-field tests were performed to assess locomotor activities and curious or exploratory behaviors of the chicks.</p><p><strong>Results: </strong>Following the injections of lentiviruses expressing mEmx1/2, the expressions of reelin, vimentin, GABA, and MAP2 increased in most parts of Wulst (W) and mesopallium (M), but not most of nidopallium (N). Neurogenesis patterns for CB and PV neurons changed toward mammalian inside-out one, and the sizes of AC staining for neurofilament were significantly larger. In addition, post-hatchling chicks showed higher rates of passive avoidance after training, but no significant differences in the total distance traveled and the percentage of time spent in the central rectangle, compared to those in the control groups.</p><p><strong>Conclusion: </strong>The present study indicated that mEmx1/2 had effects on the development of chick pallium, suggesting that they are probably involved in the organization and evolution of amniote pallium.</p>\",\"PeriodicalId\":50585,\"journal\":{\"name\":\"Developmental Neuroscience\",\"volume\":\" \",\"pages\":\"1-18\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developmental Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000543601\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000543601","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

同源盒基因是高度保守的基因,在大脑发育中起着至关重要的作用。最近我们发现,与其他羊膜动物相比,哺乳动物在Emx1中有大约20个氨基酸的额外片段,在Emx2中有一个多(Ala)6-7。研究表明,Emx1和Emx2在大脑发育中具有协同作用。这些报道提出了一个有趣的问题,即哺乳动物和非哺乳动物之间Emx1和Emx2的差异是否与羊膜白膜的组织和进化有关。方法:在胚胎第3天将表达小鼠Emx1和Emx2的慢病毒(mEmx1/2)和附加片段注射到鸡端脑室,研究mEmx1/2对鸡pallium发育的影响,而将含有鸡Emx1和Emx2的慢病毒(cEmx1/2)、不插入靶向基因或注射生理盐水作为对照。免疫组化染色观察鸡的reelin、vimentin、GABA和MAP2的表达、calbindin和parvalbumin神经元的神经发生模式和前连合的大小,并进行野外实验评估鸡的运动活动和好奇或探索行为。结果:在注射表达mEmx1/2的慢病毒后,Wulst (W)和mesopallium (M)的大部分组织中reelin、vimentin、GABA和MAP2的表达增加,而nidopallium (N)的表达没有增加。calbindin (CB)和parvalbumin (PV)神经元的神经发生模式转变为哺乳动物的内向外模式,神经丝的前连合染色明显变大。此外,与对照组相比,孵育后的雏鸡在训练后表现出更高的被动回避率,但在总行走距离和在中心矩形中停留的时间百分比方面没有显著差异。结论:本研究提示mEmx1/2对雏鸡苍白膜发育有影响,可能参与了羊膜苍白膜的组织和进化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transferring Mouse Emx1 and Emx2 Lentiviruses into the Chicken Embryonic Brain and Their Implication to the Organization and Evolution of the Amniote Pallium.

Introduction: Homeobox genes are highly conserved and play critical roles in brain development. Recently, we have found that mammals have an additional fragment of approximately 20 amino acids in Emx1 and a poly-(AL)6-7 in Emx2, compared to other amniotes. It has been shown that Emx1 and Emx2 have synergistic actions in the brain development. These reports raise an interesting issue whether the differences of Emx1 and Emx2 between mammals and non-mammals are concerned with the organization and evolution of amniote pallium.

Methods: Lentiviruses expressing mouse Emx1 and Emx2 (mEmx1/2) with additional fragments were injected into the ventricle of the chick telencephalon at embryonic day 3 to study the effects of mEmx1/2 on the development of chick pallium, whereas injections of lentiviruses containing chick Emx1 and Emx2 (cEmx1/2), no targeted gene insert or saline were as controls. The expressions of reelin, vimentin, GABA and MAP2, neurogenesis patterns for calbindin (CB) and parvalbumin (PV) neurons and the sizes of anterior commissure (AC) were then studied by immuohistochemical staining, and open-field tests were performed to assess locomotor activities and curious or exploratory behaviors of the chicks.

Results: Following the injections of lentiviruses expressing mEmx1/2, the expressions of reelin, vimentin, GABA, and MAP2 increased in most parts of Wulst (W) and mesopallium (M), but not most of nidopallium (N). Neurogenesis patterns for CB and PV neurons changed toward mammalian inside-out one, and the sizes of AC staining for neurofilament were significantly larger. In addition, post-hatchling chicks showed higher rates of passive avoidance after training, but no significant differences in the total distance traveled and the percentage of time spent in the central rectangle, compared to those in the control groups.

Conclusion: The present study indicated that mEmx1/2 had effects on the development of chick pallium, suggesting that they are probably involved in the organization and evolution of amniote pallium.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Developmental Neuroscience
Developmental Neuroscience 医学-发育生物学
CiteScore
4.00
自引率
3.40%
发文量
49
审稿时长
>12 weeks
期刊介绍: ''Developmental Neuroscience'' is a multidisciplinary journal publishing papers covering all stages of invertebrate, vertebrate and human brain development. Emphasis is placed on publishing fundamental as well as translational studies that contribute to our understanding of mechanisms of normal development as well as genetic and environmental causes of abnormal brain development. The journal thus provides valuable information for both physicians and biologists. To meet the rapidly expanding information needs of its readers, the journal combines original papers that report on progress and advances in developmental neuroscience with concise mini-reviews that provide a timely overview of key topics, new insights and ongoing controversies. The editorial standards of ''Developmental Neuroscience'' are high. We are committed to publishing only high quality, complete papers that make significant contributions to the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信