{"title":"Ex vivo magnetic resonance imaging of the human fetal brain.","authors":"Ruike Chen, Chen Tian, Keqing Zhu, Guoliang Ren, Aimin Bao, Yi Shen, Xiao Li, Yaoyao Zhang, Wenying Qiu, Chao Ma, Jing Zhang, Dan Wu","doi":"10.1159/000542276","DOIUrl":"https://doi.org/10.1159/000542276","url":null,"abstract":"<p><strong>Background: </strong>The fetal brain undergoes a dynamic process of development during gestation, marked by well-orchestrated events such as neuronal proliferation, migration, axonal outgrowth, and dendritic arborization, mainly elucidated through histological studies. Ex vivo magnetic resonance imaging (MRI) has emerged as a useful tool for 3D visualization of the developing fetal brain, serving as a complementary tool to traditional histology.</p><p><strong>Summary: </strong>In this review, we summarized the commonly employed ex vivo MRI techniques and their advances in fetal brain imaging, as well as a standard protocol for postmortem fetal brain specimen collection and fixation. We then provided an overview of ex vivo MRI-based studies on the fetal brain.</p><p><strong>Key messages: </strong>According to our review, ex vivo T1- or T2-weighted structural MRI has contributed to the characterization of the anatomy of transient neuronal proliferative zones, the basal ganglia, and the cortex. Diffusion MRI related techniques, such as diffusion tensor imaging and tractography, have helped to investigate the microstructural patterns of fetal brain tissue, as well as the early emergence and development of neuronal migration pathways and white matter bundles. Ex vivo MRI findings have shown strong histological correlations, supporting the potential of MRI in evaluating the developmental events in the fetal brain. Postmortem MRI examinations have also demonstrated comparable, and in certain cases, superior performance to traditional autopsy in revealing fetal brain abnormalities. In conclusion, ex vivo fetal brain MRI is an invaluable tool that provides unique insights into the early stages of brain development.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"1-31"},"PeriodicalIF":2.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Catherine Parkin, Juliet Ortiz, Sofia Cruz, Kevin G Bath, Russell D Romeo
{"title":"Pubertal- and Stress-Dependent Changes in Cellular Activation and Expression of Excitatory Amino Acid Receptor Subunits in the Paraventricular Nucleus of the Hypothalamus in Male and Female Rats.","authors":"Catherine Parkin, Juliet Ortiz, Sofia Cruz, Kevin G Bath, Russell D Romeo","doi":"10.1159/000542277","DOIUrl":"10.1159/000542277","url":null,"abstract":"<p><strong>Introduction: </strong>Pubertal maturation is marked by significant changes in stress-induced hormonal responses mediated by the hypothalamic-pituitary-adrenal (HPA) axis, with prepubertal male and female rats often exhibiting greater HPA reactivity compared to adult males and females. Though the implications of these changes are unclear, elevated stress responsiveness might contribute to the stress-related vulnerabilities often associated with puberty.</p><p><strong>Methods: </strong>The current experiments sought to determine whether differences in cellular activation, as measured by FOS immunohistochemistry, or excitatory ionotropic glutamate receptor subunit expression, as measured by qRT-PCR, in the paraventricular nucleus (PVN) were associated with these noted pubertal shifts in stress reactivity in male and female rats. As the PVN is the key nucleus responsible for activating the hormonal stress response, we predicted greater cellular activation and higher expression levels of glutamate receptor subunits in the PVN of prepubertal males and females compared to their adult counterparts.</p><p><strong>Results: </strong>Our FOS data revealed that while prepubertal males showed greater stress-induced activation in the PVN than adult males, prepubertal females showed less activation than adult females. Moreover, many of the NMDA, AMPA, and kainate receptor subunits measured, including Grin1, Grin2b, Gria1, Gria2, Grik1, and Grik2, had higher expression levels in adults, particularly in males.</p><p><strong>Conclusions: </strong>Though not supporting our initial predictions, these data do indicate that age and stress influence the activation of the PVN and the expression of glutamate receptor subunits important in its function. These data also suggest that the effects of age and stress are different in males and females. Though still far from a clear understanding of what mechanism(s) mediate pubertal shift in stress reactivity, these data add to our growing understanding of how age, stress, and sex influence HPA function.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"1-11"},"PeriodicalIF":2.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ting-Ting Yang, Ran Wei, Fei-Fei Jin, Wei Yu, Fang Zhang, Yu Peng, Shu-Jun Zhang, Si-Hua Qi, Jia-Ren Liu
{"title":"Dexmedetomidine Alleviates the Long-Term Neurodevelopmental Toxicity Induced by Sevoflurane in the Developing Brain.","authors":"Ting-Ting Yang, Ran Wei, Fei-Fei Jin, Wei Yu, Fang Zhang, Yu Peng, Shu-Jun Zhang, Si-Hua Qi, Jia-Ren Liu","doi":"10.1159/000542114","DOIUrl":"10.1159/000542114","url":null,"abstract":"<p><strong>Introduction: </strong>Sevoflurane is an extensively used anesthetic for pediatric patients; however, numerous studies showed that sevoflurane (SEVO) may cause long-term neurodevelopmental toxicity. Dexmedetomidine (DEX) has been shown to be protective against SEVO-induced neurotoxicity, but the mechanism remains unclear. The effects and mechanisms of different DEX administration routes on SEVO-induced neurotoxicity and long-term cognitive defects were determined and further investigated the role of sex in these processes.</p><p><strong>Methods: </strong>Male and female Sprague Dawley rats at postnatal day 7 (PND7) received an intraperitoneal injection of DEX (10 μg/kg) before or after exposure to 2.5% SEVO for 6 h, or before and after SEVO exposure. The respiratory and mortality rates of the pups were recorded during anesthesia. Neuroapoptosis was evaluated by TdT-mediated dUTP nick-end labeling staining. Immunohistochemistry and immunofluorescence were employed to detect the expression of caspase-3 in neuronal cells and neurons. The expression of GSK-3β and DISC1 was determined by Western blotting or RT-qPCR. Morris water maze (MWM) test was used to evaluate the learning and memory ability of rats until they were 3 weeks and 5 weeks old.</p><p><strong>Results: </strong>Compared with the control group, exposure to 2.5% SEVO resulted in increased neuroapoptosis and decreased the expression of DISC1 at levels of mRNA and protein and phosphorylated GSK-3β in the developing brain. SEVO exposure during critical neurodevelopmental periods could cause persistent cognitive defects in adolescent male and female rats and inhibited DISC1 and phosphorylated GSK-3β protein expression. The neurotoxic impacts of SEVO were lessened by the administration of DEX (10 μg/kg) before or after exposure.</p><p><strong>Conclusion: </strong>Our findings suggest that DEX (10 μg/kg) mitigates the neurotoxic effects of SEVO on the developing rat brain as well as postnatal cognitive defects by regulating the DISC1/GSK-3β signaling.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"1"},"PeriodicalIF":4.6,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142479780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinnan Xu, Fan Wang, Yi Gao, Chuanyu Qi, Tiannan Chen, Jia Yan
{"title":"The Relationship between Early Exposure to General Anesthesia and Neurobehavioral Deficits.","authors":"Jinnan Xu, Fan Wang, Yi Gao, Chuanyu Qi, Tiannan Chen, Jia Yan","doi":"10.1159/000542005","DOIUrl":"10.1159/000542005","url":null,"abstract":"<p><strong>Background: </strong>In contemporary medical practice, general anesthesia plays an essential role in pediatric surgical procedures. While modern anesthetic protocols have demonstrated safety and efficacy across various pathological conditions, concerns persist regarding the potential neurotoxic effects associated with early exposure to general anesthesia.</p><p><strong>Summary: </strong>Current research primarily examines the neurocognitive developmental impacts, with limited focus on neurobehavioral developmental disorders. This review presents a comprehensive analysis of clinical trial results related to five critical neurobehavioral developmental disorders: fine motor disability, attention-deficit hyperactivity disorder, impulse control disorders, autism spectrum disorder, and developmental coordination disorder. Furthermore, this review synthesizes insights from basic research on the potential toxicological mechanisms of general anesthetic agents that could influence clinical neurobehavioral changes. These findings provide valuable guidance for the prudent and safe utilization of anesthetic agents in pediatric patients.</p><p><strong>Key messages: </strong>This review explores the potential connections between general anesthesia and five neurobehavioral disorders, highlighting the importance of cautious anesthetic use in children in light of current research findings.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"1-17"},"PeriodicalIF":2.3,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142479781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Janet L Cunningham, Jennifer Frankovich, Robert A Dubin, Erika Pedrosa, Refia Nur Baykara, Noelle Cathleen Schlenk, Shahina B Maqbool, Hedwig Dolstra, Jacqueline Marino, Jacob Edinger, Julia M Shea, Gonzalo Laje, Sigrid M A Swagemakers, Siamala Sinnadurai, Zhengdong D Zhang, Jhih-Rong Lin, Peter J van der Spek, Herbert M Lachman
{"title":"Ultrarare Variants in DNA Damage Repair Genes in Pediatric Acute-Onset Neuropsychiatric Syndrome or Acute Behavioral Regression in Neurodevelopmental Disorders.","authors":"Janet L Cunningham, Jennifer Frankovich, Robert A Dubin, Erika Pedrosa, Refia Nur Baykara, Noelle Cathleen Schlenk, Shahina B Maqbool, Hedwig Dolstra, Jacqueline Marino, Jacob Edinger, Julia M Shea, Gonzalo Laje, Sigrid M A Swagemakers, Siamala Sinnadurai, Zhengdong D Zhang, Jhih-Rong Lin, Peter J van der Spek, Herbert M Lachman","doi":"10.1159/000541908","DOIUrl":"10.1159/000541908","url":null,"abstract":"<p><strong>Introduction: </strong>Acute onset of severe psychiatric symptoms or regression may occur in children with premorbid neurodevelopmental disorders, although typically developing children can also be affected. Infections or other stressors are likely triggers. The underlying causes are unclear, but a current hypothesis suggests the convergence of genes that influence neuronal and immunological function. We previously identified 11 genes in pediatric acute-onset neuropsychiatric syndrome (PANS), in which two classes of genes related to either synaptic function or the immune system were found. Among the latter, three affect the DNA damage response (DDR): PPM1D, CHK2, and RAG1. We now report an additional 17 cases with mutations in PPM1D and other DDR genes in patients with acute onset of psychiatric symptoms and/or regression that their clinicians classified as PANS or another inflammatory brain condition.</p><p><strong>Methods: </strong>We analyzed genetic findings obtained from parents and carried out whole-exome sequencing on a total of 17 cases, which included 3 sibling pairs and a family with 4 affected children.</p><p><strong>Results: </strong>The DDR genes include clusters affecting p53 DNA repair (PPM1D, ATM, ATR, 53BP1, and RMRP), and the Fanconi Anemia Complex (FANCE, SLX4/FANCP, FANCA, FANCI, and FANCC). We hypothesize that defects in DNA repair genes, in the context of infection or other stressors, could contribute to decompensated states through an increase in genomic instability with a concomitant accumulation of cytosolic DNA in immune cells triggering DNA sensors, such as cGAS-STING and AIM2 inflammasomes, as well as central deficits on neuroplasticity. In addition, increased senescence and defective apoptosis affecting immunological responses could be playing a role.</p><p><strong>Conclusion: </strong>These compelling preliminary findings motivate further genetic and functional characterization as the downstream impact of DDR deficits may point to novel treatment strategies.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"1-20"},"PeriodicalIF":2.3,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142479782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Junia Lara de Deus,Oluwaseun Samuel Faborode,Sayan Nandi
{"title":"Synaptic pruning by microglia: Lessons from genetic studies in mice.","authors":"Junia Lara de Deus,Oluwaseun Samuel Faborode,Sayan Nandi","doi":"10.1159/000541379","DOIUrl":"https://doi.org/10.1159/000541379","url":null,"abstract":"BACKGROUNDNeural circuits are subjected to refinement throughout life. The dynamic addition and loss of synapses (pruning) are necessary for maturation of neural circuits and synaptic plasticity. Due to their phagocytic nature, microglia have been considered as the primary mediators of synaptic pruning. Synaptic pruning can strengthen an active synapse by removing excess weaker synapses during development. Inappropriate synaptic pruning can often influence a disease outcome or an injury response.SUMMARYThis review offers a focused discussion on microglial roles in synaptic pruning, based on the evidence gathered from genetic manipulations in mice. Genetically-labeled microglia and synapses often allow assessment of their interactions in real time. Further manipulations involving synaptically-localized molecules, neuronally- or glial-derived diffusible factors, and their respective cognate receptors in microglia, provide critical evidence in support of a direct role of microglia in synaptic pruning.KEY MESSAGEWe discuss microglial contact-dependent \"eat-me\", \"don't-eat-me\" and \"find-me\" signals, as well as recently identified non-contact pruning, under the contexts of neural circuit, brain region, developmental window, and an injury or a disease state.","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":"14 1","pages":"1-26"},"PeriodicalIF":2.9,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142250384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hyun Iee Shin, Na Mi Lee, Sun Mi Kim, Hyunchan Hwang, Gangta Choi, Doug Hyun Han, Don-Kyu Kim
{"title":"The association between ventricle ratio in preterm infants and motor developmental delay.","authors":"Hyun Iee Shin, Na Mi Lee, Sun Mi Kim, Hyunchan Hwang, Gangta Choi, Doug Hyun Han, Don-Kyu Kim","doi":"10.1159/000540754","DOIUrl":"https://doi.org/10.1159/000540754","url":null,"abstract":"<p><p>Introduction Early prediction and timely intervention are particularly essential for high-risk preterm infants. Brain magnetic resonance imaging (BMRI) is frequently used alongside functional evaluations to improve predictions of developmental outcomes. This study aimed to assess voxel-based brain volumetry in extremely preterm infants using BMRI at term equivalent age (TEA) and investigate its association with developmental outcomes. Methods From March 2016 to December 2019, high-risk preterm infants (birth weight < 1500g or gestational age < 32 weeks) with BMRI at TEA and follow-up developmental data assessed by Bayley-III were included. For BMRI volumetry, manual tracing and segmentation were performed on T1-weighted scans, and after smoothing, voxels were calculated for each brain segment. Forty-seven subjects were enrolled and categorized into typical/delayed motor groups Results Results revealed a significant difference in ventricle size and ventricle ratio in BMRI at TEA between the groups. Even after controlling for other factors that could influence developmental outcomes, ventricle ratio emerged as a robust, single predictor for future motor development. Conclusion This study suggests the potential clinical utility of BMRI volumetry in predicting motor development outcomes.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142121048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Protective Effects of Early Neonatal Methylxanthine Treatment on Cognitive and Language Outcomes in Premature Infants with and without High-Risk Perinatal Factors.","authors":"Ruth M McLeod, Ted S Rosenkrantz, R Holly Fitch","doi":"10.1159/000540540","DOIUrl":"10.1159/000540540","url":null,"abstract":"<p><strong>Introduction: </strong>Caffeine and theophylline are methylxanthines and nonselective adenosine antagonists commonly used to treat apnea of prematurity. Both human and animal data suggest that xanthines also have clinically important long-term neuroprotective effects in the presence of inflammation in the perinatal period as seen following hypoxic-ischemic brain insults. Moreover, these protective effects appear to be more robust when administered shortly (<48 h) after preterm birth.</p><p><strong>Method: </strong>To evaluate the importance of the postdelivery therapeutic window, we collected and analyzed medical data from preterm infants meeting criteria (23-30 weeks' gestational age [GA]), born at the University of Connecticut Health Center (UCHC), and cared for at the UCHC/Connecticut Children's Medical Center (CCMC) NICU from 1991 to 2017 (n = 858). Eighteen-month follow-up data included cognitive and language scores from the Neonatal Neurodevelopmental Follow-Up Clinic records, with a retention of 81% of subjects (n = 696). Differences were analyzed via multivariate ANOVA and ANCOVA.</p><p><strong>Results: </strong>Analyses showed that infants who received xanthine treatment within the first 48 h after preterm birth showed significantly better 18-month behavioral outcomes than those treated later than 48 h, despite a lack of a priori differences in GA, birth, or length of stay. The positive effect of early xanthine therapy was particularly robust for infants exposed prenatally to the inflammatory conditions of chorioamnionitis and/or preeclampsia.</p><p><strong>Conclusions: </strong>Current findings are consistent with human and animal data, showing that caffeine exerts protective effects, at least in part via attenuation of inflammation. Results add to the evidence supporting routine immediate prophylactic neuroprotective xanthine therapy (i.e., caffeine) in preterm infants. Findings also add important new evidence of the augmented value of caffeine for infants with inflammatory exposure due to mothers with preeclampsia or chorioamnionitis.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"1-11"},"PeriodicalIF":2.3,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141762361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dendritic Morphology of Developing Hippocampal Neurons in Cyp11a1 Null Mice.","authors":"Hao-Hua Jiang, Tzu-Hsuan Wu, Li-Jen Lee, Jui-Chen Lee, Bon-Chu Chung, Feng-Ming Yang, Meng-Chun Hu","doi":"10.1159/000540106","DOIUrl":"10.1159/000540106","url":null,"abstract":"<p><strong>Introduction: </strong>Neurosteroids have a variety of neurological functions, such as neurite growth, neuroprotection, myelination, and neurogenesis. P450scc, encoded by CYP11A1 gene, is the cholesterol side chain cleavage enzyme that catalyzes the first and rate-limiting step in steroidogenesis. In this study, we examine the dendritic morphology in developing hippocampal neurons of Cyp11a1 null mice at P15, a critical period for synapse formation and maturation.</p><p><strong>Methods: </strong>Knockout mice were maintained until P15 with hormone administration. The Golgi-Cox method stained CA1 and CA3 pyramidal neurons in the hippocampus to reveal dendritic morphology.</p><p><strong>Results: </strong>We demonstrated that Cyp11a1 null mice usually die within 7 days after birth and thus collected brain samples at postnatal day 5 (P5) for examination. There was significant shrinkage of dendrite size and diminishment of dendritic branching in CA1 and CA3 pyramidal neurons in the hippocampus of Cyp11a1 null mice, suggesting a developmental delay. We wonder if this delay may catch up later in life. Since the age of P15 is a critical period for synapse formation and maturation, the Cyp11a1 null mice were rescued by receiving hormone administration until P15 that the dendritic morphology in the developing hippocampal neurons could be examined. The results indicated that the total dendritic length, the number of dendritic branches, as well as dendritic arborization in the CA1 and CA3 pyramidal neurons are significantly decreased in P15 knockout mice when compared to the wild type. The spine densities were also significantly decreased. In addition, the Western blot analysis revealed decreased PSD-95 expression levels in the knockout mice compared to the wild type at P15.</p><p><strong>Conclusion: </strong>These results suggested that Cyp11a1 deficiency impairs the dendritic structures in the developing hippocampal pyramidal neurons.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"1-15"},"PeriodicalIF":2.3,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141494121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gabriella M Sahyoun, Trang Dao Do, Amanda Anqueira-Gonzàlez, Ava Hornblass, Sarah E Canetta
{"title":"Peripuberty Is a Sensitive Period for Prefrontal Parvalbumin Interneuron Activity to Impact Adult Cognitive Flexibility.","authors":"Gabriella M Sahyoun, Trang Dao Do, Amanda Anqueira-Gonzàlez, Ava Hornblass, Sarah E Canetta","doi":"10.1159/000539584","DOIUrl":"10.1159/000539584","url":null,"abstract":"<p><strong>Introduction: </strong>Developmental windows in which experiences can elicit long-lasting effects on brain circuitry and behavior are called \"sensitive periods\" and reflect a state of heightened plasticity. The classic example of a sensitive period comes from studies of sensory systems, like the visual system, where early visual experience is required for normal wiring of primary visual cortex and proper visual functioning. At a mechanistic level, loss of incoming visual input results in a decrease in activity in thalamocortical neurons representing the affected eye, resulting in an activity-dependent reduction in the representation of those inputs in the visual cortex and loss of visual perception in that eye. While associative cortical regions like the medial prefrontal cortex (mPFC) do not receive direct sensory input, recent findings demonstrate that changes in activity levels experienced by this region during defined windows in early development may also result in long-lasting changes in prefrontal cortical circuitry, network function, and behavior. For example, we recently demonstrated that decreasing the activity of mPFC parvalbumin-expressing (PV) interneurons during a period of time encompassing peripuberty (postnatal day P14) to adolescence (P50) led to a long-lasting decrease in their functional inhibition of pyramidal cells, as well as impairments in cognitive flexibility. While the effects of manipulating mPFC PV interneuron activity were selective to development, and not adulthood, the exact timing of the sensitive period for this manipulation remains unknown.</p><p><strong>Methods: </strong>To refine the sensitive period in which inhibiting mPFC PV cell activity can lead to persistent effects on prefrontal functioning, we used a chemogenetic approach to restrict our inhibition of mPFC PV activity to two distinct windows: (1) peripuberty (P14-P32) and (2) early adolescence (P33-P50). We then investigated adult behavior after P90. In parallel, we performed histological analysis of molecular markers associated with sensitive period onset and offset in visual cortex, to define the onset and offset of peak-sensitive period plasticity in the mPFC.</p><p><strong>Results: </strong>We found that inhibition of mPFC PV interneurons in peripuberty (P14-P32), but not adolescence (P33-P50), led to an impairment in set-shifting behavior in adulthood manifest as an increase in trials to reach criterion performance and errors. Consistent with a pubertal onset of sensitive period plasticity in the PFC, we found that histological markers of sensitive period onset and offset also demarcated P14 and P35, respectively. The time course of expression of these markers was similar in visual cortex.</p><p><strong>Conclusion: </strong>Both lines of research converge on the peripubertal period (P14-P32) as one of heightened sensitive period plasticity in the mPFC. Further, our direct comparison of markers of sensitive period plasticity across the pr","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"1-12"},"PeriodicalIF":2.3,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141238768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}