量化与雪貂大脑皮层生长相关的脑回和脑沟形成的时间。

IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY
Kara E Garcia, Christopher Basinski, Christopher D Kroenke
{"title":"量化与雪貂大脑皮层生长相关的脑回和脑沟形成的时间。","authors":"Kara E Garcia, Christopher Basinski, Christopher D Kroenke","doi":"10.1159/000544824","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Mounting evidence indicates that the cerebral cortical folding pattern conveys information relevant to brain function, as well as the developmental trajectory, leading to the observed pattern at maturity. However, relatively little is known about the biomechanics of gyral and sulcal formation. Ferrets are a tractable animal model for studying folding, in which this process occurs over the first 40 days of postnatal life. Recently, high-resolution magnetic resonance brain imaging data have been made available for a template representing 10 ferrets (5 male, 5 female) at 6 equally spaced time points ranging from postnatal days (P)8 to P38.</p><p><strong>Methods: </strong>For each hemisphere, cerebral cortex surface models representing the template brain at each of the six ages were registered to one another using the anatomical multimodal surface matching (aMSM) algorithm. Local cerebral cortical curvature was determined at each surface vertex at each developmental age, and the T2-weighted images were used to determine cortical thickness at each surface vertex. Relative surface area expansion between pairs of time points was also mapped onto each surface vertex. Systematic comparisons were performed between cortical growth and changes in curvature that accompany gyral and sulcal formation. The sequence of changes of these anatomical characteristics was delineated during folding.</p><p><strong>Results: </strong>The cerebral cortex transitions between two patterns of regionally varying cortical thickness. In early stages of gyral and sulcal formation, the cortex is relatively thick in regions destined to exhibit high magnitudes of surface curvature (folding), regardless of whether the region will become part of a gyrus or a sulcus. In the mature brain, a different regional pattern of thickness is achieved in which gyral cortex is thicker than sulcal cortex. Surface area expansion is also observed to relate to folding, as reflected in the regional pattern of surface curvature changes. Over a given developmental interval, changes in surface curvature are positively correlated with subsequent surface area expansion but negatively correlated with previous surface area expansion.</p><p><strong>Conclusions: </strong>These comparisons lay out a sequence of growth and folding events. First, relative thickening of the cortex occurs in regions that will be gyral and sulcal at maturity. These regions undergo increases in curvature, facilitating surface area increases in the folded cortex. During the final phases of fold formation, the rate of thickness increase in gyri outpaces that in sulci.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"1-15"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying the Timing of Gyral and Sulcal Formation Relative to Growth in the Ferret Cerebral Cortex.\",\"authors\":\"Kara E Garcia, Christopher Basinski, Christopher D Kroenke\",\"doi\":\"10.1159/000544824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Mounting evidence indicates that the cerebral cortical folding pattern conveys information relevant to brain function, as well as the developmental trajectory, leading to the observed pattern at maturity. However, relatively little is known about the biomechanics of gyral and sulcal formation. Ferrets are a tractable animal model for studying folding, in which this process occurs over the first 40 days of postnatal life. Recently, high-resolution magnetic resonance brain imaging data have been made available for a template representing 10 ferrets (5 male, 5 female) at 6 equally spaced time points ranging from postnatal days (P)8 to P38.</p><p><strong>Methods: </strong>For each hemisphere, cerebral cortex surface models representing the template brain at each of the six ages were registered to one another using the anatomical multimodal surface matching (aMSM) algorithm. Local cerebral cortical curvature was determined at each surface vertex at each developmental age, and the T2-weighted images were used to determine cortical thickness at each surface vertex. Relative surface area expansion between pairs of time points was also mapped onto each surface vertex. Systematic comparisons were performed between cortical growth and changes in curvature that accompany gyral and sulcal formation. The sequence of changes of these anatomical characteristics was delineated during folding.</p><p><strong>Results: </strong>The cerebral cortex transitions between two patterns of regionally varying cortical thickness. In early stages of gyral and sulcal formation, the cortex is relatively thick in regions destined to exhibit high magnitudes of surface curvature (folding), regardless of whether the region will become part of a gyrus or a sulcus. In the mature brain, a different regional pattern of thickness is achieved in which gyral cortex is thicker than sulcal cortex. Surface area expansion is also observed to relate to folding, as reflected in the regional pattern of surface curvature changes. Over a given developmental interval, changes in surface curvature are positively correlated with subsequent surface area expansion but negatively correlated with previous surface area expansion.</p><p><strong>Conclusions: </strong>These comparisons lay out a sequence of growth and folding events. First, relative thickening of the cortex occurs in regions that will be gyral and sulcal at maturity. These regions undergo increases in curvature, facilitating surface area increases in the folded cortex. During the final phases of fold formation, the rate of thickness increase in gyri outpaces that in sulci.</p>\",\"PeriodicalId\":50585,\"journal\":{\"name\":\"Developmental Neuroscience\",\"volume\":\" \",\"pages\":\"1-15\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developmental Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000544824\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000544824","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

越来越多的证据表明,大脑皮层折叠模式传达了与大脑功能相关的信息,以及导致成熟时观察到的模式的发育轨迹。然而,对于脑回和脑沟形成的生物力学,我们所知相对较少。雪貂是研究折叠的一种容易控制的动物模型,在这种动物中,折叠过程发生在出生后的前40天。最近,对10只雪貂(5公5母)在出生后第8天至第38天等间隔的6个时间点的模板进行了高分辨率磁共振脑成像数据。在这项研究中,局部大脑皮质厚度、曲率和相对表面积被映射到从发育模板导出的皮质中厚表面网格模型上。系统地比较皮质生长和随脑回和脑沟形成的曲率变化,可以描绘出这些解剖特征在折叠过程中的变化顺序。发现大脑皮层在两种不同区域皮层厚度的模式之间转换。在脑回和脑沟形成的早期阶段,无论该区域将成为脑回还是脑沟的一部分,注定会表现出高强度的表面弯曲(折叠)的区域的皮层相对较厚。在成熟的大脑中,形成了不同的区域厚度模式,其中脑回皮层比脑沟皮层厚。表面面积的扩大也被观察到与折叠有关,这反映在表面曲率变化的区域格局中。在一定的发育区间内,地表曲率的变化与随后的地表面积扩张呈正相关,与之前的地表面积扩张呈负相关。总之,这些比较展示了生长和折叠事件的序列。首先,大脑皮层的相对增厚发生在成熟时脑回和脑沟区域。这些区域的曲率增加,促进了折叠皮层表面积的增加。在褶皱形成的最后阶段,脑回的厚度增加速度超过沟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantifying the Timing of Gyral and Sulcal Formation Relative to Growth in the Ferret Cerebral Cortex.

Introduction: Mounting evidence indicates that the cerebral cortical folding pattern conveys information relevant to brain function, as well as the developmental trajectory, leading to the observed pattern at maturity. However, relatively little is known about the biomechanics of gyral and sulcal formation. Ferrets are a tractable animal model for studying folding, in which this process occurs over the first 40 days of postnatal life. Recently, high-resolution magnetic resonance brain imaging data have been made available for a template representing 10 ferrets (5 male, 5 female) at 6 equally spaced time points ranging from postnatal days (P)8 to P38.

Methods: For each hemisphere, cerebral cortex surface models representing the template brain at each of the six ages were registered to one another using the anatomical multimodal surface matching (aMSM) algorithm. Local cerebral cortical curvature was determined at each surface vertex at each developmental age, and the T2-weighted images were used to determine cortical thickness at each surface vertex. Relative surface area expansion between pairs of time points was also mapped onto each surface vertex. Systematic comparisons were performed between cortical growth and changes in curvature that accompany gyral and sulcal formation. The sequence of changes of these anatomical characteristics was delineated during folding.

Results: The cerebral cortex transitions between two patterns of regionally varying cortical thickness. In early stages of gyral and sulcal formation, the cortex is relatively thick in regions destined to exhibit high magnitudes of surface curvature (folding), regardless of whether the region will become part of a gyrus or a sulcus. In the mature brain, a different regional pattern of thickness is achieved in which gyral cortex is thicker than sulcal cortex. Surface area expansion is also observed to relate to folding, as reflected in the regional pattern of surface curvature changes. Over a given developmental interval, changes in surface curvature are positively correlated with subsequent surface area expansion but negatively correlated with previous surface area expansion.

Conclusions: These comparisons lay out a sequence of growth and folding events. First, relative thickening of the cortex occurs in regions that will be gyral and sulcal at maturity. These regions undergo increases in curvature, facilitating surface area increases in the folded cortex. During the final phases of fold formation, the rate of thickness increase in gyri outpaces that in sulci.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Developmental Neuroscience
Developmental Neuroscience 医学-发育生物学
CiteScore
4.00
自引率
3.40%
发文量
49
审稿时长
>12 weeks
期刊介绍: ''Developmental Neuroscience'' is a multidisciplinary journal publishing papers covering all stages of invertebrate, vertebrate and human brain development. Emphasis is placed on publishing fundamental as well as translational studies that contribute to our understanding of mechanisms of normal development as well as genetic and environmental causes of abnormal brain development. The journal thus provides valuable information for both physicians and biologists. To meet the rapidly expanding information needs of its readers, the journal combines original papers that report on progress and advances in developmental neuroscience with concise mini-reviews that provide a timely overview of key topics, new insights and ongoing controversies. The editorial standards of ''Developmental Neuroscience'' are high. We are committed to publishing only high quality, complete papers that make significant contributions to the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信