Saška Fatić, Nina Stanojević, Ljiljana Jeličić, Ružica Bilibajkić, Maša Marisavljević, Slavica Maksimović, Aleksandar Gavrilović, Miško Subotić
{"title":"Beta Spectral Power during Passive Listening in Preschool Children with Specific Language Impairment.","authors":"Saška Fatić, Nina Stanojević, Ljiljana Jeličić, Ružica Bilibajkić, Maša Marisavljević, Slavica Maksimović, Aleksandar Gavrilović, Miško Subotić","doi":"10.1159/000539135","DOIUrl":"10.1159/000539135","url":null,"abstract":"<p><strong>Introduction: </strong>Children with specific language impairment (SLI) have difficulties in different speech and language domains. Electrophysiological studies have documented that auditory processing in children with SLI is atypical and probably caused by delayed and abnormal auditory maturation. During the resting state, or different auditory tasks, children with SLI show low or high beta spectral power, which could be a clinical correlate for investigating brain rhythms.</p><p><strong>Methods: </strong>The aim of this study was to examine the electrophysiological cortical activity of the beta rhythm while listening to words and nonwords in children with SLI in comparison to typical development (TD) children. The participants were 50 children with SLI, aged 4 and 5 years, and 50 age matched TD children. The children were divided into two subgroups according to age: (1) children 4 years of age; (2) children 5 years of age.</p><p><strong>Results: </strong>The older group differed from the younger group in beta auditory processing, with increased values of beta spectral power in the right frontal, temporal, and parietal regions. In addition, children with SLI have higher beta spectral power than TD children in the bilateral temporal regions.</p><p><strong>Conclusion: </strong>Complex beta auditory activation in TD and SLI children indicates the presence of early changes in functional brain connectivity.</p><p><strong>Introduction: </strong>Children with specific language impairment (SLI) have difficulties in different speech and language domains. Electrophysiological studies have documented that auditory processing in children with SLI is atypical and probably caused by delayed and abnormal auditory maturation. During the resting state, or different auditory tasks, children with SLI show low or high beta spectral power, which could be a clinical correlate for investigating brain rhythms.</p><p><strong>Methods: </strong>The aim of this study was to examine the electrophysiological cortical activity of the beta rhythm while listening to words and nonwords in children with SLI in comparison to typical development (TD) children. The participants were 50 children with SLI, aged 4 and 5 years, and 50 age matched TD children. The children were divided into two subgroups according to age: (1) children 4 years of age; (2) children 5 years of age.</p><p><strong>Results: </strong>The older group differed from the younger group in beta auditory processing, with increased values of beta spectral power in the right frontal, temporal, and parietal regions. In addition, children with SLI have higher beta spectral power than TD children in the bilateral temporal regions.</p><p><strong>Conclusion: </strong>Complex beta auditory activation in TD and SLI children indicates the presence of early changes in functional brain connectivity.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"98-111"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140899631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Angela Saadat, Haree Pallera, Frank Lattanzio, Daley Owens, Amy Gaines, Sai Susmitha Ravi, Tushar Shah
{"title":"Structural and Functional Effects of C5aR1 Antagonism in a Rat Model of Neonatal Hypoxic-Ischemic Encephalopathy.","authors":"Angela Saadat, Haree Pallera, Frank Lattanzio, Daley Owens, Amy Gaines, Sai Susmitha Ravi, Tushar Shah","doi":"10.1159/000539506","DOIUrl":"10.1159/000539506","url":null,"abstract":"<p><strong>Introduction: </strong>The complement response activates upon reperfusion in neonatal hypoxic-ischemic encephalopathy (HIE) and contributes to excessive neuroinflammation and worse outcomes. C5a is a powerful anaphylatoxin central to each of the complement pathways, and its engagement with C5aR1 is directly tied to brain injury and neuronal death. Reasoning C5aR1 antagonism can decrease excessive neuroinflammation and thereby improve neurological and functional outcomes, we tested this hypothesis in a rat model of HIE with PMX205, a small molecule that inhibits C5a-C5aR1 interaction.</p><p><strong>Methods: </strong>Term-equivalent pups (P10-12) were subjected to mild-moderate HIE by Vannucci's method and treated with PMX205. We compared motor and cognitive outcomes with two behavioral tests each (food handling and accelerod; novel object recognition [NOR] and open field) to improve the accuracy of our conclusions.</p><p><strong>Results: </strong>Improvements were observed in fine motor function, balance, and exploratory behaviors, but little to no improvement in recognition memory and gross motor function. Lesion area and histological assessments showed robust cortical neuroprotection from treatment but persistent injury to the CA1 region of the hippocampus. Better structural and functional outcomes were seen within 1 day of treatment, suggesting C5aR1 antagonism beyond the latent injury phase may impair recovery. In a dose-response experiment, cerebral area loss from injury was improved only in female rats, suggesting underlying sexual dimorphisms in the complement response.</p><p><strong>Conclusion: </strong>These results demonstrate proof-of-concept for targeting C5aR1 signaling in neonatal HIE with PMX205 and underscore the role of sex in hypoxic-ischemic injury.</p><p><strong>Introduction: </strong>The complement response activates upon reperfusion in neonatal hypoxic-ischemic encephalopathy (HIE) and contributes to excessive neuroinflammation and worse outcomes. C5a is a powerful anaphylatoxin central to each of the complement pathways, and its engagement with C5aR1 is directly tied to brain injury and neuronal death. Reasoning C5aR1 antagonism can decrease excessive neuroinflammation and thereby improve neurological and functional outcomes, we tested this hypothesis in a rat model of HIE with PMX205, a small molecule that inhibits C5a-C5aR1 interaction.</p><p><strong>Methods: </strong>Term-equivalent pups (P10-12) were subjected to mild-moderate HIE by Vannucci's method and treated with PMX205. We compared motor and cognitive outcomes with two behavioral tests each (food handling and accelerod; novel object recognition [NOR] and open field) to improve the accuracy of our conclusions.</p><p><strong>Results: </strong>Improvements were observed in fine motor function, balance, and exploratory behaviors, but little to no improvement in recognition memory and gross motor function. Lesion area and histological assessments showed robus","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"112-126"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141154365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mi Chen, Yang Yang, Jiatian Cui, Li Qiu, Xiaohua Zou, Xianggang Zeng
{"title":"Upstream Stimulating Factor 2 Aggravates Spinal Nerve Ligation-Induced Neuropathic Pain in Mice via Regulating SNHG5/miR-181b-5p.","authors":"Mi Chen, Yang Yang, Jiatian Cui, Li Qiu, Xiaohua Zou, Xianggang Zeng","doi":"10.1159/000538178","DOIUrl":"10.1159/000538178","url":null,"abstract":"<p><strong>Introduction: </strong>Upstream stimulating factor 2 (USF2) belongs to basic Helix-Loop-Helix-Leucine zipper transcription factor family, regulating expression of genes involved in immune response or energy metabolism network. Role of USF2 in neuropathic pain was evaluated.</p><p><strong>Methods: </strong>Mice were intraspinally injected with adenovirus for knockdown of USF2 (Ad-shUSF2) and then subjected to spinal nerve ligation (SNL) to induce neuropathic pain. Distribution and expression of USF2 were detected by western blot and immunofluorescence. Mechanical and thermal pain sensitivity were examined by paw withdrawal thresholds (PWT) and paw withdrawal latency (PWL). Chromatin immunoprecipitation (ChIP) and luciferase activity assays were performed to detect binding ability between USF2 and SNHG5.</p><p><strong>Results: </strong>The expression of USF2 was elevated and colocalized with astrocytes and microglia in L5 dorsal root ganglion (DRG) of SNL-induced mice. Injection of Ad-shUSF2 attenuated SNL-induced decrease of PWT and PWL in mice. Knockdown of USF2 increased the level of IL-10 but decreased TNF-α, IL-1β, and IL-6 in SNL-induced mice. Silence of USF2 enhanced protein expression of CD206 while reducing expression of CD16 and CD32 in SNL-induced mice. USF2 binds to promoter of SNHG5 and weakens SNL-induced up-regulation of SNHG5. SNHG5 binds to miR-181b-5p, and miR-181b-5p to interact with CXCL5.</p><p><strong>Conclusion: </strong>Silence of USF2 ameliorated neuropathic pain, suppressed activation of M1 microglia, and inhibited inflammation in SNL-induced mice through regulation of SNHG5/miR-181b-5p/CXCL5 axis. Therefore, USF2/SNHG5/miR-181b-5p/CXCL5 might be a promising target for neuropathic pain. However, the effect of USF2/SNHG5/miR-181b-5p/CXCL5 on neuropathic pain should also be investigated in further research.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"1-11"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140112098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amara S Brinks, Lauren K Carrica, Dominic J Tagler, Joshua M Gulley, Janice M Juraska
{"title":"Timing of Methamphetamine Exposure during Adolescence Differentially Influences Parvalbumin and Perineuronal Net Immunoreactivity in the Medial Prefrontal Cortex of Female, but Not Male, Rats.","authors":"Amara S Brinks, Lauren K Carrica, Dominic J Tagler, Joshua M Gulley, Janice M Juraska","doi":"10.1159/000538608","DOIUrl":"10.1159/000538608","url":null,"abstract":"<p><strong>Introduction: </strong>Adolescence involves significant reorganization within the medial prefrontal cortex (mPFC), including modifications to inhibitory neurotransmission that may be mediated through parvalbumin (PV) interneurons and their surrounding perineuronal nets (PNNs). These developmental changes, which can result in increased PV neuron activity in adulthood, may be disrupted by drug use resulting in lasting changes in mPFC function and behavior. Methamphetamine (METH), which is a readily available drug used by some adolescents, increases PV neuron activity, and could influence the activity-dependent maturational process of these neurons.</p><p><strong>Methods: </strong>In the present study, we used male and female Sprague-Dawley rats to test the hypothesis that METH exposure influences PV and PNN expression in a sex- and age-specific manner. Rats were injected daily with saline or 3.0 mg/kg METH from early adolescence (30-38 days old), late adolescence (40-48 days old), or young adulthood (60-68 days old). One day following exposure, the effects of METH on PV cells and PNN expression were assessed using immunofluorescent labeling within the mPFC.</p><p><strong>Results: </strong>METH exposure did not alter male PV neurons or PNNs. Females exposed in early adolescence or adulthood had more PV-expressing neurons while those exposed in later adolescence had fewer, suggesting distinct windows of vulnerability to changes induced by METH exposure. In addition, females exposed to METH had more PNNs and more intense PV neuron staining, further suggesting that METH exposure in adolescence uniquely influences the development of inhibitory circuits in the female mPFC.</p><p><strong>Conclusions: </strong>This study indicates that the timing of METH exposure, even within adolescence, influences its neural effects in females.</p><p><strong>Introduction: </strong>Adolescence involves significant reorganization within the medial prefrontal cortex (mPFC), including modifications to inhibitory neurotransmission that may be mediated through parvalbumin (PV) interneurons and their surrounding perineuronal nets (PNNs). These developmental changes, which can result in increased PV neuron activity in adulthood, may be disrupted by drug use resulting in lasting changes in mPFC function and behavior. Methamphetamine (METH), which is a readily available drug used by some adolescents, increases PV neuron activity, and could influence the activity-dependent maturational process of these neurons.</p><p><strong>Methods: </strong>In the present study, we used male and female Sprague-Dawley rats to test the hypothesis that METH exposure influences PV and PNN expression in a sex- and age-specific manner. Rats were injected daily with saline or 3.0 mg/kg METH from early adolescence (30-38 days old), late adolescence (40-48 days old), or young adulthood (60-68 days old). One day following exposure, the effects of METH on PV cells and PNN expression were assessed","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"27-39"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11436475/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140319851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhongjie Shi, Nadiya Sharif, Kehuan Luo, Sidhartha Tan
{"title":"Development of a New Scoring System in Higher Animals for Testing Cognitive Function in the Newborn Period: Effect of Prenatal Hypoxia-Ischemia.","authors":"Zhongjie Shi, Nadiya Sharif, Kehuan Luo, Sidhartha Tan","doi":"10.1159/000538607","DOIUrl":"10.1159/000538607","url":null,"abstract":"<p><strong>Introduction: </strong>Enhanced models for assessing cognitive function in the neonatal period are imperative in higher animals. Postnatal motor deficits, characteristic of cerebral palsy, emerge in newborn kits within our prenatal rabbit model of hypoxia-ischemia (HI). In humans, prenatal HI leads to intellectual disability and cerebral palsy. In a study examining cognitive function in newborn rabbits, we explored several questions. Is there a distinction between conditioned and unconditioned kits? Can the kits discern the human face or the laboratory coat? Do motorically normal kits, born after prenatal HI, exhibit cognitive deficits?</p><p><strong>Methods: </strong>The conditioning protocol was randomly assigned to kits from each litter. For conditioning, the same human, wearing a laboratory coat, fed the rabbit kits for 9 days before the cognitive test. The 6-arm radial maze was chosen for its simplicity and ease of use. Normally appearing kits, born after uterine ischemia at 79% or 92% term in New Zealand White rabbits, were compared to naïve kits. On postpartum day 22/23 or 29/30, the 6-arm maze helped determine if the kits recognized the original feeder from bystander (test 1) or the laboratory coat on bystander (test 2). The use of masks of feeder/bystander (test 3) assessed confounding cues. A weighted score was devised to address variability in entry to maze arms, time, and repeated-trial learning.</p><p><strong>Results: </strong>In conditioned kits, both naïve and HI kits exhibited a significant preference for the face of the feeder but not the laboratory coat. Cognitive deficits were minimal in normal-appearing HI kits.</p><p><strong>Conclusion: </strong>The weighted score was amenable to statistical manipulation.</p><p><strong>Introduction: </strong>Enhanced models for assessing cognitive function in the neonatal period are imperative in higher animals. Postnatal motor deficits, characteristic of cerebral palsy, emerge in newborn kits within our prenatal rabbit model of hypoxia-ischemia (HI). In humans, prenatal HI leads to intellectual disability and cerebral palsy. In a study examining cognitive function in newborn rabbits, we explored several questions. Is there a distinction between conditioned and unconditioned kits? Can the kits discern the human face or the laboratory coat? Do motorically normal kits, born after prenatal HI, exhibit cognitive deficits?</p><p><strong>Methods: </strong>The conditioning protocol was randomly assigned to kits from each litter. For conditioning, the same human, wearing a laboratory coat, fed the rabbit kits for 9 days before the cognitive test. The 6-arm radial maze was chosen for its simplicity and ease of use. Normally appearing kits, born after uterine ischemia at 79% or 92% term in New Zealand White rabbits, were compared to naïve kits. On postpartum day 22/23 or 29/30, the 6-arm maze helped determine if the kits recognized the original feeder from bystander (test 1) or the laborator","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"12-26"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11436483/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140319850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cole King, Ivina Mali, Hunter Strating, Elizabeth Fangman, Jenna Neyhard, Macy Payne, Stefan H Bossmann, Bethany Plakke
{"title":"Region-Specific Brain Volume Changes Emerge in Adolescence in the Valproic Acid Model of Autism and Parallel Human Findings.","authors":"Cole King, Ivina Mali, Hunter Strating, Elizabeth Fangman, Jenna Neyhard, Macy Payne, Stefan H Bossmann, Bethany Plakke","doi":"10.1159/000538932","DOIUrl":"10.1159/000538932","url":null,"abstract":"<p><strong>Introduction: </strong>Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and communication deficits, cognitive dysfunction, and stereotyped repetitive behaviors. Regional volume changes are commonly observed in individuals with ASD. To examine volumetric dysregulation across adolescence, the valproic acid (VPA) model was used to induce ASD-like phenotypes in rats.</p><p><strong>Method: </strong>Regional volumes were obtained via magnetic resonance imaging at either postnatal day 28 or postnatal day 40 (P40), which correspond to early and late adolescence, respectively.</p><p><strong>Results: </strong>Consistent with prior research, VPA animals had reduced total brain volume compared to control animals. A novel outcome was that VPA animals had overgrown right hippocampi at P40. Differences in the pattern of development of the anterior cingulate cortex were also observed in VPA animals. Differences for the posterior cingulate were only observed in males, but not females.</p><p><strong>Conclusion: </strong>These results demonstrate differences in region-specific developmental trajectories between control and VPA animals and suggest that the VPA model may capture regional volume changes consistent with human ASD.</p><p><strong>Introduction: </strong>Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and communication deficits, cognitive dysfunction, and stereotyped repetitive behaviors. Regional volume changes are commonly observed in individuals with ASD. To examine volumetric dysregulation across adolescence, the valproic acid (VPA) model was used to induce ASD-like phenotypes in rats.</p><p><strong>Method: </strong>Regional volumes were obtained via magnetic resonance imaging at either postnatal day 28 or postnatal day 40 (P40), which correspond to early and late adolescence, respectively.</p><p><strong>Results: </strong>Consistent with prior research, VPA animals had reduced total brain volume compared to control animals. A novel outcome was that VPA animals had overgrown right hippocampi at P40. Differences in the pattern of development of the anterior cingulate cortex were also observed in VPA animals. Differences for the posterior cingulate were only observed in males, but not females.</p><p><strong>Conclusion: </strong>These results demonstrate differences in region-specific developmental trajectories between control and VPA animals and suggest that the VPA model may capture regional volume changes consistent with human ASD.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"68-80"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511791/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140858865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Divyen K Shah, Susana Pereira, Gregory A Lodygensky
{"title":"Long-Term Neurologic Consequences following Fetal Growth Restriction: The Impact on Brain Reserve.","authors":"Divyen K Shah, Susana Pereira, Gregory A Lodygensky","doi":"10.1159/000539266","DOIUrl":"10.1159/000539266","url":null,"abstract":"<p><strong>Background: </strong>Fetal growth restriction (FGR) corresponds to the fetus's inability to achieve an adequate weight gain based on genetic potential and gestational age. It is an important cause of morbidity and mortality.</p><p><strong>Summary: </strong>In this review, we address the challenges of diagnosis and classification of FGR. We review how chronic fetal hypoxia impacts brain development. We describe recent advances on placental and fetal brain imaging using magnetic resonance imaging and how they offer new noninvasive means to study growth restriction in humans. We go on to review the impact of FGR on brain integrity in the neonatal period, later childhood, and adulthood and review available therapies.</p><p><strong>Key messages: </strong>FGR consequences are not limited to the perinatal period. We hypothesize that impaired brain reserve, as defined by structure and size, may predict some concerning epidemiological data of impaired cognitive outcomes and dementia with aging in this group of patients.</p><p><strong>Background: </strong>Fetal growth restriction (FGR) corresponds to the fetus's inability to achieve an adequate weight gain based on genetic potential and gestational age. It is an important cause of morbidity and mortality.</p><p><strong>Summary: </strong>In this review, we address the challenges of diagnosis and classification of FGR. We review how chronic fetal hypoxia impacts brain development. We describe recent advances on placental and fetal brain imaging using magnetic resonance imaging and how they offer new noninvasive means to study growth restriction in humans. We go on to review the impact of FGR on brain integrity in the neonatal period, later childhood, and adulthood and review available therapies.</p><p><strong>Key messages: </strong>FGR consequences are not limited to the perinatal period. We hypothesize that impaired brain reserve, as defined by structure and size, may predict some concerning epidemiological data of impaired cognitive outcomes and dementia with aging in this group of patients.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"139-146"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140917406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Indumathy Jagadeeswaran, Jiyoung Oh, Sarah E Sinnett
{"title":"Preclinical Milestones in MECP2 Gene Transfer for Treating Rett Syndrome.","authors":"Indumathy Jagadeeswaran, Jiyoung Oh, Sarah E Sinnett","doi":"10.1159/000539267","DOIUrl":"10.1159/000539267","url":null,"abstract":"<p><strong>Background: </strong>Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2). After gene transfer in mice, exogenous MeCP2 expression must be regulated to avoid dose-dependent toxicity.</p><p><strong>Summary: </strong>The preclinical gene therapy literature for treating RTT illustrates a duly diligent progression that begins with proof-of-concept studies and advances toward the development of safer, regulated MECP2 viral genome designs. This design progression was partly achieved through international collaborative studies. In 2023, clinicians administered investigational gene therapies for RTT to patients a decade after the first preclinical gene therapy publications for RTT (clinical trial numbers NCT05606614 and NCT05898620). As clinicians take on a more prominent role in MECP2 gene therapy research, preclinical researchers may continue to test more nuanced hypotheses regarding the safety, efficacy, and mechanism of MECP2 gene transfer.</p><p><strong>Key message: </strong>This review summarizes the history of preclinical MECP2 gene transfer for treating RTT and acknowledges major contributions among colleagues in the field. The first clinical injections are a shared milestone.</p><p><strong>Background: </strong>Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2). After gene transfer in mice, exogenous MeCP2 expression must be regulated to avoid dose-dependent toxicity.</p><p><strong>Summary: </strong>The preclinical gene therapy literature for treating RTT illustrates a duly diligent progression that begins with proof-of-concept studies and advances toward the development of safer, regulated MECP2 viral genome designs. This design progression was partly achieved through international collaborative studies. In 2023, clinicians administered investigational gene therapies for RTT to patients a decade after the first preclinical gene therapy publications for RTT (clinical trial numbers NCT05606614 and NCT05898620). As clinicians take on a more prominent role in MECP2 gene therapy research, preclinical researchers may continue to test more nuanced hypotheses regarding the safety, efficacy, and mechanism of MECP2 gene transfer.</p><p><strong>Key message: </strong>This review summarizes the history of preclinical MECP2 gene transfer for treating RTT and acknowledges major contributions among colleagues in the field. The first clinical injections are a shared milestone.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"147-156"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140899633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gabriella M Sahyoun, Trang Dao Do, Amanda Anqueira-Gonzàlez, Ava Hornblass, Sarah E Canetta
{"title":"Peripuberty Is a Sensitive Period for Prefrontal Parvalbumin Interneuron Activity to Impact Adult Cognitive Flexibility.","authors":"Gabriella M Sahyoun, Trang Dao Do, Amanda Anqueira-Gonzàlez, Ava Hornblass, Sarah E Canetta","doi":"10.1159/000539584","DOIUrl":"10.1159/000539584","url":null,"abstract":"<p><strong>Introduction: </strong>Developmental windows in which experiences can elicit long-lasting effects on brain circuitry and behavior are called \"sensitive periods\" and reflect a state of heightened plasticity. The classic example of a sensitive period comes from studies of sensory systems, like the visual system, where early visual experience is required for normal wiring of primary visual cortex and proper visual functioning. At a mechanistic level, loss of incoming visual input results in a decrease in activity in thalamocortical neurons representing the affected eye, resulting in an activity-dependent reduction in the representation of those inputs in the visual cortex and loss of visual perception in that eye. While associative cortical regions like the medial prefrontal cortex (mPFC) do not receive direct sensory input, recent findings demonstrate that changes in activity levels experienced by this region during defined windows in early development may also result in long-lasting changes in prefrontal cortical circuitry, network function, and behavior. For example, we recently demonstrated that decreasing the activity of mPFC parvalbumin-expressing (PV) interneurons during a period of time encompassing peripuberty (postnatal day P14) to adolescence (P50) led to a long-lasting decrease in their functional inhibition of pyramidal cells, as well as impairments in cognitive flexibility. While the effects of manipulating mPFC PV interneuron activity were selective to development, and not adulthood, the exact timing of the sensitive period for this manipulation remains unknown.</p><p><strong>Methods: </strong>To refine the sensitive period in which inhibiting mPFC PV cell activity can lead to persistent effects on prefrontal functioning, we used a chemogenetic approach to restrict our inhibition of mPFC PV activity to two distinct windows: (1) peripuberty (P14-P32) and (2) early adolescence (P33-P50). We then investigated adult behavior after P90. In parallel, we performed histological analysis of molecular markers associated with sensitive period onset and offset in visual cortex, to define the onset and offset of peak-sensitive period plasticity in the mPFC.</p><p><strong>Results: </strong>We found that inhibition of mPFC PV interneurons in peripuberty (P14-P32), but not adolescence (P33-P50), led to an impairment in set-shifting behavior in adulthood manifest as an increase in trials to reach criterion performance and errors. Consistent with a pubertal onset of sensitive period plasticity in the PFC, we found that histological markers of sensitive period onset and offset also demarcated P14 and P35, respectively. The time course of expression of these markers was similar in visual cortex.</p><p><strong>Conclusion: </strong>Both lines of research converge on the peripubertal period (P14-P32) as one of heightened sensitive period plasticity in the mPFC. Further, our direct comparison of markers of sensitive period plasticity across the pr","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"127-138"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11612032/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141238768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fuxin Lu, Celeste Yen, Chase D Corley, Jeffrey G McDonald, Tiina Manninen, Nicholas R Stewart, Christina M Zhu, Donna M Ferriero, Xiangning Jiang
{"title":"Dysregulation of Brain Cholesterol Biosynthetic Pathway following Hypoxia Ischemia in Neonatal Mice.","authors":"Fuxin Lu, Celeste Yen, Chase D Corley, Jeffrey G McDonald, Tiina Manninen, Nicholas R Stewart, Christina M Zhu, Donna M Ferriero, Xiangning Jiang","doi":"10.1159/000543254","DOIUrl":"10.1159/000543254","url":null,"abstract":"<p><strong>Introduction: </strong>Brain cholesterol relies on de novo biosynthesis and is crucial for brain development. Cholesterol synthesis is a complex series of reactions that involves more than twenty enzymes to reach the final product and generates a large number of intermediate sterols along two alternate pathways. This is a highly regulated and oxygen-dependent process and thus sensitive to hypoxia.</p><p><strong>Methods: </strong>Using the modified Vannucci procedure, a clinically relevant animal model of neonatal hypoxia ischemia (HI), we characterized the profile of cholesterol and its sterol intermediates, along with the key enzymes on the cholesterol synthetic pathway over a time course of 5 days after HI in the postnatal day 10 mouse brain.</p><p><strong>Results: </strong>Although the total cholesterol levels in the injured cortices appeared to be minimally attenuated at 5 days following HI, there was an overall repression of brain cholesterol biosynthesis. Lanosterol and the downstream sterols in both the Bloch and Kandutsch-Russell (K-R) pathways were consistently reduced for up to 3 days except for desmosterol, which was elevated. Correspondingly, protein expression of the controlling transcription factors sterol regulatory element-binding protein 2 (SREBP-2) and SREBP-1 was decreased at early time points (within 6 h), in parallel with the downregulation of several substrate enzymes for up to 5 days post-HI. HMG-CoA reductase (HMGCR), the first rate-limiting enzyme, was upregulated in the first 24 h after HI. The expression of 24-dehydrocholesterol reductase (DHCR24) that catalyzes the last step to produce cholesterol on the Bloch pathway and bridges the Bloch to K-R pathway was also augmented.</p><p><strong>Conclusions: </strong>Our data suggest perturbed brain cholesterol biosynthesis following neonatal HI. As some sterol intermediates and enzymes have diverse functions in brain development and stress responses other than producing cholesterol, assessment of their dynamic changes after HI is important to understand the lipid responses in rodent HI models and to identify lipid-based targeted therapies in future studies.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"1-17"},"PeriodicalIF":2.3,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142878360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}