GAPDH、β-肌动蛋白和β-微管蛋白在小鼠皮质发育过程中表现出年龄依赖性的蛋白表达变化。

IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY
Daniella Rodriguez, Michelle Nguyen, Tejas Devata, Deval Patel, Diana Tavares-Ferreira, Lena H Nguyen
{"title":"GAPDH、β-肌动蛋白和β-微管蛋白在小鼠皮质发育过程中表现出年龄依赖性的蛋白表达变化。","authors":"Daniella Rodriguez, Michelle Nguyen, Tejas Devata, Deval Patel, Diana Tavares-Ferreira, Lena H Nguyen","doi":"10.1159/000544064","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>GAPDH, β-actin, and β-tubulin are essential housekeeping proteins commonly used as reference controls for protein expression studies. GAPDH is a key glycolytic enzyme that facilitates the production of cellular energy, while β-actin and β-tubulin are major structural components of the cytoskeleton. Besides their well-established housekeeping functions, emerging studies have demonstrated critical roles for these proteins in brain developmental and pathological processes. However, few studies have examined how the expression patterns of these proteins change throughout mammalian brain development to adulthood. Considering the dynamic structural and functional changes that occur during brain development and the roles of GAPDH, β-actin, and β-tubulin in related biological processes, we investigated the developmental expression levels of these proteins in the mouse cortex at various embryonic and postnatal stages.</p><p><strong>Methods: </strong>Cortical tissue was collected from mice at embryonic days 15 and 17, postnatal days 0, 5, 10, 15, 20, and during adulthood. Protein levels were analyzed using western blotting analysis with total protein normalization.</p><p><strong>Results: </strong>We identified a substantial increase in GAPDH protein levels and a decrease in β-actin and β-tubulin protein levels in the mouse cortex between birth and early adulthood, which occurred during the second week of postnatal life. Analysis of RNA-seq data from the ENCODE Consortium revealed correlated changes at the RNA transcript level.</p><p><strong>Conclusion: </strong>Overall, our study reveals robust age-dependent changes in cortical GAPDH, β-actin, and β-tubulin expression levels during mouse postnatal development and suggests precautions when using these proteins as reference controls in cortical development studies.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"1-12"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GAPDH, β-Actin, and β-Tubulin Display Age-Dependent Protein Expression Changes in the Mouse Cortex during Development.\",\"authors\":\"Daniella Rodriguez, Michelle Nguyen, Tejas Devata, Deval Patel, Diana Tavares-Ferreira, Lena H Nguyen\",\"doi\":\"10.1159/000544064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>GAPDH, β-actin, and β-tubulin are essential housekeeping proteins commonly used as reference controls for protein expression studies. GAPDH is a key glycolytic enzyme that facilitates the production of cellular energy, while β-actin and β-tubulin are major structural components of the cytoskeleton. Besides their well-established housekeeping functions, emerging studies have demonstrated critical roles for these proteins in brain developmental and pathological processes. However, few studies have examined how the expression patterns of these proteins change throughout mammalian brain development to adulthood. Considering the dynamic structural and functional changes that occur during brain development and the roles of GAPDH, β-actin, and β-tubulin in related biological processes, we investigated the developmental expression levels of these proteins in the mouse cortex at various embryonic and postnatal stages.</p><p><strong>Methods: </strong>Cortical tissue was collected from mice at embryonic days 15 and 17, postnatal days 0, 5, 10, 15, 20, and during adulthood. Protein levels were analyzed using western blotting analysis with total protein normalization.</p><p><strong>Results: </strong>We identified a substantial increase in GAPDH protein levels and a decrease in β-actin and β-tubulin protein levels in the mouse cortex between birth and early adulthood, which occurred during the second week of postnatal life. Analysis of RNA-seq data from the ENCODE Consortium revealed correlated changes at the RNA transcript level.</p><p><strong>Conclusion: </strong>Overall, our study reveals robust age-dependent changes in cortical GAPDH, β-actin, and β-tubulin expression levels during mouse postnatal development and suggests precautions when using these proteins as reference controls in cortical development studies.</p>\",\"PeriodicalId\":50585,\"journal\":{\"name\":\"Developmental Neuroscience\",\"volume\":\" \",\"pages\":\"1-12\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developmental Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000544064\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000544064","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

GAPDH、β-肌动蛋白和β-微管蛋白是必不可少的管家蛋白,通常用作蛋白质表达研究的参考对照。GAPDH是促进细胞能量产生的关键糖酵解酶,而β-肌动蛋白和β-微管蛋白是细胞骨架的主要结构成分。除了他们公认的管家功能,新兴的研究已经证明了这些蛋白质在大脑发育和病理过程中的关键作用。然而,很少有研究考察这些蛋白质的表达模式在哺乳动物大脑发育到成年期间是如何变化的。考虑到大脑发育过程中发生的动态结构和功能变化以及GAPDH、β-肌动蛋白和β-微管蛋白在相关生物学过程中的作用,我们采用总蛋白归一化的western blotting分析方法研究了这些蛋白在胚胎(E15-P0)和出生后(P0-P20,成年)不同阶段小鼠皮质中的发育表达水平。我们发现,在出生和成年早期之间,小鼠皮层中GAPDH蛋白水平显著增加,β-肌动蛋白和β-微管蛋白蛋白水平下降,这发生在出生后的第二周。ENCODE联盟的RNA-seq数据分析揭示了RNA转录水平的相关变化。总的来说,我们的研究揭示了小鼠出生后发育过程中皮质GAPDH、β-肌动蛋白和β-微管蛋白表达水平的强烈年龄依赖性变化,并建议在皮质发育研究中使用这些蛋白作为对照时应注意事项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GAPDH, β-Actin, and β-Tubulin Display Age-Dependent Protein Expression Changes in the Mouse Cortex during Development.

Introduction: GAPDH, β-actin, and β-tubulin are essential housekeeping proteins commonly used as reference controls for protein expression studies. GAPDH is a key glycolytic enzyme that facilitates the production of cellular energy, while β-actin and β-tubulin are major structural components of the cytoskeleton. Besides their well-established housekeeping functions, emerging studies have demonstrated critical roles for these proteins in brain developmental and pathological processes. However, few studies have examined how the expression patterns of these proteins change throughout mammalian brain development to adulthood. Considering the dynamic structural and functional changes that occur during brain development and the roles of GAPDH, β-actin, and β-tubulin in related biological processes, we investigated the developmental expression levels of these proteins in the mouse cortex at various embryonic and postnatal stages.

Methods: Cortical tissue was collected from mice at embryonic days 15 and 17, postnatal days 0, 5, 10, 15, 20, and during adulthood. Protein levels were analyzed using western blotting analysis with total protein normalization.

Results: We identified a substantial increase in GAPDH protein levels and a decrease in β-actin and β-tubulin protein levels in the mouse cortex between birth and early adulthood, which occurred during the second week of postnatal life. Analysis of RNA-seq data from the ENCODE Consortium revealed correlated changes at the RNA transcript level.

Conclusion: Overall, our study reveals robust age-dependent changes in cortical GAPDH, β-actin, and β-tubulin expression levels during mouse postnatal development and suggests precautions when using these proteins as reference controls in cortical development studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Developmental Neuroscience
Developmental Neuroscience 医学-发育生物学
CiteScore
4.00
自引率
3.40%
发文量
49
审稿时长
>12 weeks
期刊介绍: ''Developmental Neuroscience'' is a multidisciplinary journal publishing papers covering all stages of invertebrate, vertebrate and human brain development. Emphasis is placed on publishing fundamental as well as translational studies that contribute to our understanding of mechanisms of normal development as well as genetic and environmental causes of abnormal brain development. The journal thus provides valuable information for both physicians and biologists. To meet the rapidly expanding information needs of its readers, the journal combines original papers that report on progress and advances in developmental neuroscience with concise mini-reviews that provide a timely overview of key topics, new insights and ongoing controversies. The editorial standards of ''Developmental Neuroscience'' are high. We are committed to publishing only high quality, complete papers that make significant contributions to the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信