Ergodic Theory and Dynamical Systems最新文献

筛选
英文 中文
Homology and K-theory of dynamical systems IV. Further structural results on groupoid homology 动力学系统的同源性和 K 理论 IV.类群同源性的进一步结构性结果
IF 0.9 3区 数学
Ergodic Theory and Dynamical Systems Pub Date : 2024-05-15 DOI: 10.1017/etds.2024.37
VALERIO PROIETTI, Makoto Yamashita
{"title":"Homology and K-theory of dynamical systems IV. Further structural results on groupoid homology","authors":"VALERIO PROIETTI, Makoto Yamashita","doi":"10.1017/etds.2024.37","DOIUrl":"https://doi.org/10.1017/etds.2024.37","url":null,"abstract":"\u0000 We consider the homology theory of étale groupoids introduced by Crainic and Moerdijk [A homology theory for étale groupoids. J. Reine Angew. Math.521 (2000), 25–46], with particular interest to groupoids arising from topological dynamical systems. We prove a Künneth formula for products of groupoids and a Poincaré-duality type result for principal groupoids whose orbits are copies of an Euclidean space. We conclude with a few example computations for systems associated to nilpotent groups such as self-similar actions, and we generalize previous homological calculations by Burke and Putnam for systems which are analogues of solenoids arising from algebraic numbers. For the latter systems, we prove the HK conjecture, even when the resulting groupoid is not ample.","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140972261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complexity of non-abelian cut-and-project sets of polytopal type I: special homogeneous Lie groups 多胞型 I 的非阿贝尔切分集的复杂性:特殊同质列支群
IF 0.9 3区 数学
Ergodic Theory and Dynamical Systems Pub Date : 2024-05-13 DOI: 10.1017/etds.2024.38
PETER KAISER
{"title":"Complexity of non-abelian cut-and-project sets of polytopal type I: special homogeneous Lie groups","authors":"PETER KAISER","doi":"10.1017/etds.2024.38","DOIUrl":"https://doi.org/10.1017/etds.2024.38","url":null,"abstract":"The aim of this paper is to determine the asymptotic growth rate of the complexity function of cut-and-project sets in the non-abelian case. In the case of model sets of polytopal type in homogeneous two-step nilpotent Lie groups, we can establish that the complexity function asymptotically behaves like <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000385_inline1.png\"/> <jats:tex-math> $r^{{mathrm {homdim}}(G) dim (H)}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Further, we generalize the concept of acceptance domains to locally compact second countable groups.","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Co-spectral radius for countable equivalence relations 可数等价关系的共谱半径
IF 0.9 3区 数学
Ergodic Theory and Dynamical Systems Pub Date : 2024-05-10 DOI: 10.1017/etds.2024.32
MIKLÓS ABERT, MIKOLAJ FRACZYK, BENJAMIN HAYES
{"title":"Co-spectral radius for countable equivalence relations","authors":"MIKLÓS ABERT, MIKOLAJ FRACZYK, BENJAMIN HAYES","doi":"10.1017/etds.2024.32","DOIUrl":"https://doi.org/10.1017/etds.2024.32","url":null,"abstract":"We define the co-spectral radius of inclusions <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000324_inline1.png\"/> <jats:tex-math> ${mathcal S}leq {mathcal R}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of discrete, probability- measure-preserving equivalence relations as the sampling exponent of a generating random walk on the ambient relation. The co-spectral radius is analogous to the spectral radius for random walks on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000324_inline2.png\"/> <jats:tex-math> $G/H$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for inclusion <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000324_inline3.png\"/> <jats:tex-math> $Hleq G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of groups. For the proof, we develop a more general version of the 2–3 method we used in another work on the growth of unimodular random rooted trees. We use this method to show that the walk growth exists for an arbitrary unimodular random rooted graph of bounded degree. We also investigate how the co-spectral radius behaves for hyperfinite relations, and discuss new critical exponents for percolation that can be defined using the co-spectral radius.","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On invariant holonomies between centers 关于中心间的不变整体性
IF 0.9 3区 数学
Ergodic Theory and Dynamical Systems Pub Date : 2024-05-08 DOI: 10.1017/etds.2024.33
RADU SAGHIN
{"title":"On invariant holonomies between centers","authors":"RADU SAGHIN","doi":"10.1017/etds.2024.33","DOIUrl":"https://doi.org/10.1017/etds.2024.33","url":null,"abstract":"We prove that for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000336_inline1.png\"/> <jats:tex-math> $C^{1+theta }$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000336_inline2.png\"/> <jats:tex-math> $theta $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-bunched, dynamically coherent partially hyperbolic diffeomorphisms, the stable and unstable holonomies between center leaves are <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000336_inline3.png\"/> <jats:tex-math> $C^1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and the derivative depends continuously on the points and on the map. Also for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000336_inline4.png\"/> <jats:tex-math> $C^{1+theta }$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000336_inline5.png\"/> <jats:tex-math> $theta $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-bunched partially hyperbolic diffeomorphisms, the derivative cocycle restricted to the center bundle has invariant continuous holonomies which depend continuously on the map. This generalizes previous results by Pugh, Shub, and Wilkinson; Burns and Wilkinson; Brown; Obata; Avila, Santamaria, and Viana; and Marin.","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Weighted topological pressure revisited 重访加权拓扑压力
IF 0.9 3区 数学
Ergodic Theory and Dynamical Systems Pub Date : 2024-05-08 DOI: 10.1017/etds.2024.35
NIMA ALIBABAEI
{"title":"Weighted topological pressure revisited","authors":"NIMA ALIBABAEI","doi":"10.1017/etds.2024.35","DOIUrl":"https://doi.org/10.1017/etds.2024.35","url":null,"abstract":"Feng and Huang [Variational principle for weighted topological pressure. <jats:italic>J. Math. Pures Appl. (9)</jats:italic>106 (2016), 411–452] introduced weighted topological entropy and pressure for factor maps between dynamical systems and established its variational principle. Tsukamoto [New approach to weighted topological entropy and pressure. <jats:italic>Ergod. Th. &amp; Dynam. Sys.</jats:italic>43 (2023), 1004–1034] redefined those invariants quite differently for the simplest case and showed via the variational principle that the two definitions coincide. We generalize Tsukamoto’s approach, redefine the weighted topological entropy and pressure for higher dimensions, and prove the variational principle. Our result allows for an elementary calculation of the Hausdorff dimension of affine-invariant sets such as self-affine sponges and certain sofic sets that reside in Euclidean space of arbitrary dimension.","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ETS volume 44 issue 6 Cover and Back matter ETS 第 44 卷第 6 期封面和封底资料
IF 0.9 3区 数学
Ergodic Theory and Dynamical Systems Pub Date : 2024-05-06 DOI: 10.1017/etds.2023.88
{"title":"ETS volume 44 issue 6 Cover and Back matter","authors":"","doi":"10.1017/etds.2023.88","DOIUrl":"https://doi.org/10.1017/etds.2023.88","url":null,"abstract":"","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141006450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ETS volume 44 issue 6 Cover and Front matter ETS 第 44 卷第 6 期封面和封底
IF 0.9 3区 数学
Ergodic Theory and Dynamical Systems Pub Date : 2024-05-06 DOI: 10.1017/etds.2023.87
{"title":"ETS volume 44 issue 6 Cover and Front matter","authors":"","doi":"10.1017/etds.2023.87","DOIUrl":"https://doi.org/10.1017/etds.2023.87","url":null,"abstract":"","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141007120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Poissonian pair correlation for directions in multi-dimensional affine lattices and escape of mass estimates for embedded horospheres 多维仿射网格中方向的泊松对相关性和嵌入角球的质量逃逸估计值
IF 0.9 3区 数学
Ergodic Theory and Dynamical Systems Pub Date : 2024-04-26 DOI: 10.1017/etds.2024.31
WOOYEON KIM, JENS MARKLOF
{"title":"Poissonian pair correlation for directions in multi-dimensional affine lattices and escape of mass estimates for embedded horospheres","authors":"WOOYEON KIM, JENS MARKLOF","doi":"10.1017/etds.2024.31","DOIUrl":"https://doi.org/10.1017/etds.2024.31","url":null,"abstract":"We prove the convergence of moments of the number of directions of affine lattice vectors that fall into a small disc, under natural Diophantine conditions on the shift. Furthermore, we show that the pair correlation function is Poissonian for <jats:italic>any</jats:italic> irrational shift in dimension 3 and higher, including well-approximable vectors. Convergence in distribution was already proved in the work of Strömbergsson and the second author [The distribution of free path lengths in the periodic Lorentz gas and related lattice point problems. <jats:italic>Ann. of Math. (2)</jats:italic>172 (2010), 1949–2033], and the principal step in the extension to convergence of moments is an escape of mass estimate for averages over embedded <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000312_inline1.png\"/> <jats:tex-math> $operatorname {SL}(d,mathbb {R})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-horospheres in the space of affine lattices.","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140800664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Khintchine-type double recurrence in abelian groups 无性群中的欣钦内型双递归
IF 0.9 3区 数学
Ergodic Theory and Dynamical Systems Pub Date : 2024-04-24 DOI: 10.1017/etds.2024.29
ETHAN ACKELSBERG
{"title":"Khintchine-type double recurrence in abelian groups","authors":"ETHAN ACKELSBERG","doi":"10.1017/etds.2024.29","DOIUrl":"https://doi.org/10.1017/etds.2024.29","url":null,"abstract":"We prove a Khintchine-type recurrence theorem for pairs of endomorphisms of a countable discrete abelian group. As a special case of the main result, if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000294_inline1.png\"/> <jats:tex-math> $Gamma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a countable discrete abelian group, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000294_inline2.png\"/> <jats:tex-math> $varphi , psi in mathrm {End}(Gamma )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000294_inline3.png\"/> <jats:tex-math> $psi - varphi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is an injective endomorphism with finite index image, then for any ergodic measure-preserving <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000294_inline4.png\"/> <jats:tex-math> $Gamma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-system <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000294_inline5.png\"/> <jats:tex-math> $( X, {mathcal {X}}, mu , (T_g)_{g in Gamma } )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, any measurable set <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000294_inline6.png\"/> <jats:tex-math> $A in {mathcal {X}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and any <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000294_inline7.png\"/> <jats:tex-math> ${varepsilon }&gt; 0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, there is a syndetic set of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000294_inline8.png\"/> <jats:tex-math> $g in Gamma$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000294_inline9.png\"/> <jats:tex-math> $mu ( A cap T_{varphi(g)}^{-1} A cap T_{psi(g)}^{-1} A ) &gt; mu(A)^3 - varepsilon$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. This generalizes the main results of Ackelsberg <jats:italic>et al</jats:italic> [Khintchine-type recurrence for 3-point configurations. <jats:italic","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140800661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Schmidt games and Cantor winning sets 施密特博弈和康托尔胜局
IF 0.9 3区 数学
Ergodic Theory and Dynamical Systems Pub Date : 2024-04-19 DOI: 10.1017/etds.2024.23
DZMITRY BADZIAHIN, STEPHEN HARRAP, EREZ NESHARIM, DAVID SIMMONS
{"title":"Schmidt games and Cantor winning sets","authors":"DZMITRY BADZIAHIN, STEPHEN HARRAP, EREZ NESHARIM, DAVID SIMMONS","doi":"10.1017/etds.2024.23","DOIUrl":"https://doi.org/10.1017/etds.2024.23","url":null,"abstract":"Schmidt games and the Cantor winning property give alternative notions of largeness, similar to the more standard notions of measure and category. Being intuitive, flexible, and applicable to recent research made them an active object of study. We survey the definitions of the most common variants and connections between them. A new game called the Cantor game is invented and helps with presenting a unifying framework. We prove surprising new results such as the coincidence of absolute winning and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000233_inline1.png\" /> <jats:tex-math> $1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> Cantor winning in metric spaces, and the fact that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000233_inline2.png\" /> <jats:tex-math> $1/2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> winning implies absolute winning for subsets of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000233_inline3.png\" /> <jats:tex-math> $mathbb {R}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We also suggest a prototypical example of a Cantor winning set to show the ubiquity of such sets in metric number theory and ergodic theory.","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140623891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信