{"title":"无性群中的欣钦内型双递归","authors":"ETHAN ACKELSBERG","doi":"10.1017/etds.2024.29","DOIUrl":null,"url":null,"abstract":"We prove a Khintchine-type recurrence theorem for pairs of endomorphisms of a countable discrete abelian group. As a special case of the main result, if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000294_inline1.png\"/> <jats:tex-math> $\\Gamma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a countable discrete abelian group, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000294_inline2.png\"/> <jats:tex-math> $\\varphi , \\psi \\in \\mathrm {End}(\\Gamma )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000294_inline3.png\"/> <jats:tex-math> $\\psi - \\varphi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is an injective endomorphism with finite index image, then for any ergodic measure-preserving <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000294_inline4.png\"/> <jats:tex-math> $\\Gamma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-system <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000294_inline5.png\"/> <jats:tex-math> $( X, {\\mathcal {X}}, \\mu , (T_g)_{g \\in \\Gamma } )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, any measurable set <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000294_inline6.png\"/> <jats:tex-math> $A \\in {\\mathcal {X}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and any <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000294_inline7.png\"/> <jats:tex-math> ${\\varepsilon }> 0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, there is a syndetic set of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000294_inline8.png\"/> <jats:tex-math> $g \\in \\Gamma$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000294_inline9.png\"/> <jats:tex-math> $\\mu ( A \\cap T_{\\varphi(g)}^{-1} A \\cap T_{\\psi(g)}^{-1} A ) > \\mu(A)^3 - \\varepsilon$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. This generalizes the main results of Ackelsberg <jats:italic>et al</jats:italic> [Khintchine-type recurrence for 3-point configurations. <jats:italic>Forum Math. Sigma</jats:italic>10 (2022), Paper no. e107] and essentially answers a question left open in that paper [Question 1.12; Khintchine-type recurrence for 3-point configurations. <jats:italic>Forum Math. Sigma</jats:italic>10 (2022), Paper no. e107]. For the group <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000294_inline10.png\"/> <jats:tex-math> $\\Gamma = {\\mathbb {Z}}^d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the result applies to pairs of endomorphisms given by matrices whose difference is non-singular. The key ingredients in the proof are: (1) a recent result obtained jointly with Bergelson and Shalom [Khintchine-type recurrence for 3-point configurations. <jats:italic>Forum Math. Sigma</jats:italic>10 (2022), Paper no. e107] that says that the relevant ergodic averages are controlled by a characteristic factor closely related to the <jats:italic>quasi-affine</jats:italic> (or <jats:italic>Conze–Lesigne</jats:italic>) factor; (2) an extension trick to reduce to systems with well-behaved (with respect to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000294_inline11.png\"/> <jats:tex-math> $\\varphi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000294_inline12.png\"/> <jats:tex-math> $\\psi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>) discrete spectrum; and (3) a description of Mackey groups associated to quasi-affine cocycles over rotational systems with well-behaved discrete spectrum.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Khintchine-type double recurrence in abelian groups\",\"authors\":\"ETHAN ACKELSBERG\",\"doi\":\"10.1017/etds.2024.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a Khintchine-type recurrence theorem for pairs of endomorphisms of a countable discrete abelian group. As a special case of the main result, if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000294_inline1.png\\\"/> <jats:tex-math> $\\\\Gamma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a countable discrete abelian group, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000294_inline2.png\\\"/> <jats:tex-math> $\\\\varphi , \\\\psi \\\\in \\\\mathrm {End}(\\\\Gamma )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000294_inline3.png\\\"/> <jats:tex-math> $\\\\psi - \\\\varphi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is an injective endomorphism with finite index image, then for any ergodic measure-preserving <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000294_inline4.png\\\"/> <jats:tex-math> $\\\\Gamma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-system <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000294_inline5.png\\\"/> <jats:tex-math> $( X, {\\\\mathcal {X}}, \\\\mu , (T_g)_{g \\\\in \\\\Gamma } )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, any measurable set <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000294_inline6.png\\\"/> <jats:tex-math> $A \\\\in {\\\\mathcal {X}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and any <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000294_inline7.png\\\"/> <jats:tex-math> ${\\\\varepsilon }> 0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, there is a syndetic set of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000294_inline8.png\\\"/> <jats:tex-math> $g \\\\in \\\\Gamma$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000294_inline9.png\\\"/> <jats:tex-math> $\\\\mu ( A \\\\cap T_{\\\\varphi(g)}^{-1} A \\\\cap T_{\\\\psi(g)}^{-1} A ) > \\\\mu(A)^3 - \\\\varepsilon$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. This generalizes the main results of Ackelsberg <jats:italic>et al</jats:italic> [Khintchine-type recurrence for 3-point configurations. <jats:italic>Forum Math. Sigma</jats:italic>10 (2022), Paper no. e107] and essentially answers a question left open in that paper [Question 1.12; Khintchine-type recurrence for 3-point configurations. <jats:italic>Forum Math. Sigma</jats:italic>10 (2022), Paper no. e107]. For the group <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000294_inline10.png\\\"/> <jats:tex-math> $\\\\Gamma = {\\\\mathbb {Z}}^d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the result applies to pairs of endomorphisms given by matrices whose difference is non-singular. The key ingredients in the proof are: (1) a recent result obtained jointly with Bergelson and Shalom [Khintchine-type recurrence for 3-point configurations. <jats:italic>Forum Math. Sigma</jats:italic>10 (2022), Paper no. e107] that says that the relevant ergodic averages are controlled by a characteristic factor closely related to the <jats:italic>quasi-affine</jats:italic> (or <jats:italic>Conze–Lesigne</jats:italic>) factor; (2) an extension trick to reduce to systems with well-behaved (with respect to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000294_inline11.png\\\"/> <jats:tex-math> $\\\\varphi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000294_inline12.png\\\"/> <jats:tex-math> $\\\\psi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>) discrete spectrum; and (3) a description of Mackey groups associated to quasi-affine cocycles over rotational systems with well-behaved discrete spectrum.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/etds.2024.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们证明了可数离散无边群的成对内定态的欣钦钦型递推定理。作为主结果的一个特例,如果 $\Gamma $ 是一个可数离散无边群, $\varphi , \psi \in \mathrm {End}(\Gamma )$ 、并且 $\psi - \varphi $ 是一个具有有限索引映像的注入式内形变,那么对于任何保全遍历度量的 $\Gamma $ 系统 $( X, {\mathcal {X}}, \mu , (T_g)_{g \in \Gamma } )$, 任何可度量集合 $\g \in \Gamma } )$, 任何可度量集合 $\g - \varphi $ 是一个具有有限索引映像的注入式内形变。)$,{\mathcal {X}}$中的任意可测集$A,以及任意${\varepsilon }>;0$, there is a syndetic set of $g \in \Gamma$ such that $\mu ( A \cap T_{\varphi(g)}^{-1} A \cap T_{\psi(g)}^{-1} A ) > \mu(A)^3 - \varepsilon$ .这概括了 Ackelsberg 等人[Khintchine-type recurrence for 3-point configurations.Forum Math.Sigma10 (2022), Paper no. e107] 并基本上回答了该论文中的一个未决问题 [Question 1.12; Khintchine-type recurrence for 3-point configurations.论坛数学。Sigma10 (2022), Paper no.]对于$\Gamma = {\mathbb {Z}}^d$ 群,结果适用于由差值为非奇异值的矩阵给出的成对内定态。证明的关键要素是(1) 与 Bergelson 和 Shalom 共同获得的最新结果[Khintchine-type recurrence for 3-point configurations.Forum Math.Sigma10 (2022), Paper no. e107]说,相关的遍历平均值由一个与准阿芬系数(或康泽-勒格朗系数)密切相关的特征因子控制;(2) 一个扩展技巧,以还原到具有良好离散谱(关于 $\varphi $ 和 $\psi $)的系统;(3) 描述与具有良好离散谱的旋转系统上的准阿芬环相关的麦基群。
Khintchine-type double recurrence in abelian groups
We prove a Khintchine-type recurrence theorem for pairs of endomorphisms of a countable discrete abelian group. As a special case of the main result, if $\Gamma $ is a countable discrete abelian group, $\varphi , \psi \in \mathrm {End}(\Gamma )$ , and $\psi - \varphi $ is an injective endomorphism with finite index image, then for any ergodic measure-preserving $\Gamma $ -system $( X, {\mathcal {X}}, \mu , (T_g)_{g \in \Gamma } )$ , any measurable set $A \in {\mathcal {X}}$ , and any ${\varepsilon }> 0$ , there is a syndetic set of $g \in \Gamma$ such that $\mu ( A \cap T_{\varphi(g)}^{-1} A \cap T_{\psi(g)}^{-1} A ) > \mu(A)^3 - \varepsilon$ . This generalizes the main results of Ackelsberg et al [Khintchine-type recurrence for 3-point configurations. Forum Math. Sigma10 (2022), Paper no. e107] and essentially answers a question left open in that paper [Question 1.12; Khintchine-type recurrence for 3-point configurations. Forum Math. Sigma10 (2022), Paper no. e107]. For the group $\Gamma = {\mathbb {Z}}^d$ , the result applies to pairs of endomorphisms given by matrices whose difference is non-singular. The key ingredients in the proof are: (1) a recent result obtained jointly with Bergelson and Shalom [Khintchine-type recurrence for 3-point configurations. Forum Math. Sigma10 (2022), Paper no. e107] that says that the relevant ergodic averages are controlled by a characteristic factor closely related to the quasi-affine (or Conze–Lesigne) factor; (2) an extension trick to reduce to systems with well-behaved (with respect to $\varphi $ and $\psi $ ) discrete spectrum; and (3) a description of Mackey groups associated to quasi-affine cocycles over rotational systems with well-behaved discrete spectrum.