Non-existence of a universal zero-entropy system via generic actions of almost complete growth

IF 0.8 3区 数学 Q2 MATHEMATICS
GEORGII VEPREV
{"title":"Non-existence of a universal zero-entropy system via generic actions of almost complete growth","authors":"GEORGII VEPREV","doi":"10.1017/etds.2024.24","DOIUrl":null,"url":null,"abstract":"We prove that a generic probability measure-preserving (p.m.p.) action of a countable amenable group <jats:italic>G</jats:italic> has scaling entropy that cannot be dominated by a given rate of growth. As a corollary, we obtain that there does not exist a topological action of <jats:italic>G</jats:italic> for which the set of ergodic invariant measures coincides with the set of all ergodic p.m.p. <jats:italic>G</jats:italic>-systems of entropy zero. We also prove that a generic action of a residually finite amenable group has scaling entropy that cannot be bounded from below by a given sequence. In addition, we show an example of an amenable group that has such a lower bound for every free p.m.p. action.","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":"214 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ergodic Theory and Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.24","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that a generic probability measure-preserving (p.m.p.) action of a countable amenable group G has scaling entropy that cannot be dominated by a given rate of growth. As a corollary, we obtain that there does not exist a topological action of G for which the set of ergodic invariant measures coincides with the set of all ergodic p.m.p. G-systems of entropy zero. We also prove that a generic action of a residually finite amenable group has scaling entropy that cannot be bounded from below by a given sequence. In addition, we show an example of an amenable group that has such a lower bound for every free p.m.p. action.
通过几乎完全增长的一般作用不存在普遍的零熵系统
我们证明,可数可合并群 G 的一般概率度量保留(p.m.p. )作用的缩放熵不能被给定的增长率所支配。作为推论,我们得到不存在一个 G 的拓扑作用,其遍历不变度量集合与熵为零的所有遍历 p.m.p. G 系统的集合重合。我们还证明了残差有限可调和群的泛函作用具有无法通过给定序列从下往上限定的缩放熵。此外,我们还展示了一个例子,说明可亲群的每个自由 p.m.p. 作用都有这样的下限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
11.10%
发文量
113
审稿时长
6-12 weeks
期刊介绍: Ergodic Theory and Dynamical Systems focuses on a rich variety of research areas which, although diverse, employ as common themes global dynamical methods. The journal provides a focus for this important and flourishing area of mathematics and brings together many major contributions in the field. The journal acts as a forum for central problems of dynamical systems and of interactions of dynamical systems with areas such as differential geometry, number theory, operator algebras, celestial and statistical mechanics, and biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信