规范与非统一规范的异同

Pub Date : 2024-04-15 DOI:10.1017/etds.2024.28
WANSHAN LIN, XUETING TIAN, CHENWEI YU
{"title":"规范与非统一规范的异同","authors":"WANSHAN LIN, XUETING TIAN, CHENWEI YU","doi":"10.1017/etds.2024.28","DOIUrl":null,"url":null,"abstract":"Pavlov [<jats:italic>Adv. Math.</jats:italic>295 (2016), 250–270; <jats:italic>Nonlinearity</jats:italic>32 (2019), 2441–2466] studied the measures of maximal entropy for dynamical systems with weak versions of specification property and found the existence of intrinsic ergodicity would be influenced by the assumptions of the gap functions. Inspired by these, in this article, we study the dynamical systems with non-uniform specification property. We give some basic properties these systems have and give an assumption for the gap functions to ensure the systems have the following five properties: CO-measures are dense in invariant measures; for every non-empty compact connected subset of invariant measures, its saturated set is dense in the total space; ergodic measures are residual in invariant measures; ergodic measures are connected; and entropy-dense. In addition, we will give examples to show the assumption is optimal.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Similarities and differences between specification and non-uniform specification\",\"authors\":\"WANSHAN LIN, XUETING TIAN, CHENWEI YU\",\"doi\":\"10.1017/etds.2024.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pavlov [<jats:italic>Adv. Math.</jats:italic>295 (2016), 250–270; <jats:italic>Nonlinearity</jats:italic>32 (2019), 2441–2466] studied the measures of maximal entropy for dynamical systems with weak versions of specification property and found the existence of intrinsic ergodicity would be influenced by the assumptions of the gap functions. Inspired by these, in this article, we study the dynamical systems with non-uniform specification property. We give some basic properties these systems have and give an assumption for the gap functions to ensure the systems have the following five properties: CO-measures are dense in invariant measures; for every non-empty compact connected subset of invariant measures, its saturated set is dense in the total space; ergodic measures are residual in invariant measures; ergodic measures are connected; and entropy-dense. In addition, we will give examples to show the assumption is optimal.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/etds.2024.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Pavlov[Adv. Math.295 (2016), 250-270; Nonlinearity32 (2019), 2441-2466]研究了具有弱版本规范属性的动力学系统的最大熵的度量,发现本征遍历性的存在会受到间隙函数假设的影响。受此启发,我们在本文中研究了具有非均匀规范性质的动力系统。我们给出了这些系统的一些基本性质,并给出了间隙函数的假设,以确保系统具有以下五个性质:CO度量在不变度量中是密集的;对于不变度量的每个非空紧凑连通子集,其饱和集在总空间中是密集的;遍历度量在不变度量中是残差的;遍历度量是连通的;熵密集。此外,我们还将举例说明该假设是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Similarities and differences between specification and non-uniform specification
Pavlov [Adv. Math.295 (2016), 250–270; Nonlinearity32 (2019), 2441–2466] studied the measures of maximal entropy for dynamical systems with weak versions of specification property and found the existence of intrinsic ergodicity would be influenced by the assumptions of the gap functions. Inspired by these, in this article, we study the dynamical systems with non-uniform specification property. We give some basic properties these systems have and give an assumption for the gap functions to ensure the systems have the following five properties: CO-measures are dense in invariant measures; for every non-empty compact connected subset of invariant measures, its saturated set is dense in the total space; ergodic measures are residual in invariant measures; ergodic measures are connected; and entropy-dense. In addition, we will give examples to show the assumption is optimal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信