{"title":"Asymptotic distribution for pairs of linear and quadratic forms at integral vectors","authors":"JIYOUNG HAN, SEONHEE LIM, KEIVAN MALLAHI-KARAI","doi":"10.1017/etds.2024.30","DOIUrl":null,"url":null,"abstract":"We study the joint distribution of values of a pair consisting of a quadratic form <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000300_inline1.png\" /> <jats:tex-math> ${\\mathbf q}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and a linear form <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000300_inline2.png\" /> <jats:tex-math> ${\\mathbf l}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> over the set of integral vectors, a problem initiated by Dani and Margulis [Orbit closures of generic unipotent flows on homogeneous spaces of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000300_inline3.png\" /> <jats:tex-math> $\\mathrm{SL}_3(\\mathbb{R})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. <jats:italic>Math. Ann.</jats:italic>286 (1990), 101–128]. In the spirit of the celebrated theorem of Eskin, Margulis and Mozes on the quantitative version of the Oppenheim conjecture, we show that if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000300_inline4.png\" /> <jats:tex-math> $n \\ge 5$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then under the assumptions that for every <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000300_inline5.png\" /> <jats:tex-math> $(\\alpha , \\beta ) \\in {\\mathbb {R}}^2 \\setminus \\{ (0,0) \\}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the form <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000300_inline6.png\" /> <jats:tex-math> $\\alpha {\\mathbf q} + \\beta {\\mathbf l}^2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is irrational and that the signature of the restriction of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000300_inline7.png\" /> <jats:tex-math> ${\\mathbf q}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> to the kernel of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000300_inline8.png\" /> <jats:tex-math> ${\\mathbf l}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000300_inline9.png\" /> <jats:tex-math> $(p, n-1-p)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000300_inline10.png\" /> <jats:tex-math> ${3\\le p\\le n-2}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the number of vectors <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000300_inline11.png\" /> <jats:tex-math> $v \\in {\\mathbb {Z}}^n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for which <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000300_inline12.png\" /> <jats:tex-math> $\\|v\\| < T$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000300_inline13.png\" /> <jats:tex-math> $a < {\\mathbf q}(v) < b$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000300_inline14.png\" /> <jats:tex-math> $c< {\\mathbf l}(v) < d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is asymptotically <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000300_inline15.png\" /> <jats:tex-math> $ C({\\mathbf q}, {\\mathbf l})(d-c)(b-a)T^{n-3}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> as <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000300_inline16.png\" /> <jats:tex-math> $T \\to \\infty $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000300_inline17.png\" /> <jats:tex-math> $C({\\mathbf q}, {\\mathbf l})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> only depends on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000300_inline18.png\" /> <jats:tex-math> ${\\mathbf q}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000300_inline19.png\" /> <jats:tex-math> ${\\mathbf l}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. The density of the set of joint values of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000300_inline20.png\" /> <jats:tex-math> $({\\mathbf q}, {\\mathbf l})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> under the same assumptions is shown by Gorodnik [Oppenheim conjecture for pairs consisting of a linear form and a quadratic form. <jats:italic>Trans. Amer. Math. Soc.</jats:italic>356(11) (2004), 4447–4463].","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We study the joint distribution of values of a pair consisting of a quadratic form ${\mathbf q}$ and a linear form ${\mathbf l}$ over the set of integral vectors, a problem initiated by Dani and Margulis [Orbit closures of generic unipotent flows on homogeneous spaces of $\mathrm{SL}_3(\mathbb{R})$ . Math. Ann.286 (1990), 101–128]. In the spirit of the celebrated theorem of Eskin, Margulis and Mozes on the quantitative version of the Oppenheim conjecture, we show that if $n \ge 5$ , then under the assumptions that for every $(\alpha , \beta ) \in {\mathbb {R}}^2 \setminus \{ (0,0) \}$ , the form $\alpha {\mathbf q} + \beta {\mathbf l}^2$ is irrational and that the signature of the restriction of ${\mathbf q}$ to the kernel of ${\mathbf l}$ is $(p, n-1-p)$ , where ${3\le p\le n-2}$ , the number of vectors $v \in {\mathbb {Z}}^n$ for which $\|v\| < T$ , $a < {\mathbf q}(v) < b$ and $c< {\mathbf l}(v) < d$ is asymptotically $ C({\mathbf q}, {\mathbf l})(d-c)(b-a)T^{n-3}$ as $T \to \infty $ , where $C({\mathbf q}, {\mathbf l})$ only depends on ${\mathbf q}$ and ${\mathbf l}$ . The density of the set of joint values of $({\mathbf q}, {\mathbf l})$ under the same assumptions is shown by Gorodnik [Oppenheim conjecture for pairs consisting of a linear form and a quadratic form. Trans. Amer. Math. Soc.356(11) (2004), 4447–4463].