论片断光滑圆同构不变度量的豪斯多夫维度

Pub Date : 2024-04-11 DOI:10.1017/etds.2024.25
FRANK TRUJILLO
{"title":"论片断光滑圆同构不变度量的豪斯多夫维度","authors":"FRANK TRUJILLO","doi":"10.1017/etds.2024.25","DOIUrl":null,"url":null,"abstract":"We show that, generically, the unique invariant measure of a sufficiently regular piecewise smooth circle homeomorphism with irrational rotation number and zero mean nonlinearity (e.g. piecewise linear) has zero Hausdorff dimension. To encode this generic condition, we consider piecewise smooth homeomorphisms as <jats:italic>generalized interval exchange transformations</jats:italic> (GIETs) of the interval and rely on the notion of <jats:italic>combinatorial rotation number</jats:italic> for GIETs, which can be seen as an extension of the classical notion of rotation number for circle homeomorphisms to the GIET setting.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Hausdorff dimension of invariant measures of piecewise smooth circle homeomorphisms\",\"authors\":\"FRANK TRUJILLO\",\"doi\":\"10.1017/etds.2024.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that, generically, the unique invariant measure of a sufficiently regular piecewise smooth circle homeomorphism with irrational rotation number and zero mean nonlinearity (e.g. piecewise linear) has zero Hausdorff dimension. To encode this generic condition, we consider piecewise smooth homeomorphisms as <jats:italic>generalized interval exchange transformations</jats:italic> (GIETs) of the interval and rely on the notion of <jats:italic>combinatorial rotation number</jats:italic> for GIETs, which can be seen as an extension of the classical notion of rotation number for circle homeomorphisms to the GIET setting.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/etds.2024.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,一般来说,具有无理旋转数和零平均非线性(如片断线性)的足够规则的片断光滑圆同构的唯一不变度量的 Hausdorff 维数为零。为了编码这个通用条件,我们将片断光滑同态视为区间的广义区间交换变换(GIET),并依赖于 GIET 的组合旋转数概念,这可以看作是圆同态的经典旋转数概念在 GIET 环境中的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the Hausdorff dimension of invariant measures of piecewise smooth circle homeomorphisms
We show that, generically, the unique invariant measure of a sufficiently regular piecewise smooth circle homeomorphism with irrational rotation number and zero mean nonlinearity (e.g. piecewise linear) has zero Hausdorff dimension. To encode this generic condition, we consider piecewise smooth homeomorphisms as generalized interval exchange transformations (GIETs) of the interval and rely on the notion of combinatorial rotation number for GIETs, which can be seen as an extension of the classical notion of rotation number for circle homeomorphisms to the GIET setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信