多维仿射网格中方向的泊松对相关性和嵌入角球的质量逃逸估计值

Pub Date : 2024-04-26 DOI:10.1017/etds.2024.31
WOOYEON KIM, JENS MARKLOF
{"title":"多维仿射网格中方向的泊松对相关性和嵌入角球的质量逃逸估计值","authors":"WOOYEON KIM, JENS MARKLOF","doi":"10.1017/etds.2024.31","DOIUrl":null,"url":null,"abstract":"We prove the convergence of moments of the number of directions of affine lattice vectors that fall into a small disc, under natural Diophantine conditions on the shift. Furthermore, we show that the pair correlation function is Poissonian for <jats:italic>any</jats:italic> irrational shift in dimension 3 and higher, including well-approximable vectors. Convergence in distribution was already proved in the work of Strömbergsson and the second author [The distribution of free path lengths in the periodic Lorentz gas and related lattice point problems. <jats:italic>Ann. of Math. (2)</jats:italic>172 (2010), 1949–2033], and the principal step in the extension to convergence of moments is an escape of mass estimate for averages over embedded <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000312_inline1.png\"/> <jats:tex-math> $\\operatorname {SL}(d,\\mathbb {R})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-horospheres in the space of affine lattices.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poissonian pair correlation for directions in multi-dimensional affine lattices and escape of mass estimates for embedded horospheres\",\"authors\":\"WOOYEON KIM, JENS MARKLOF\",\"doi\":\"10.1017/etds.2024.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove the convergence of moments of the number of directions of affine lattice vectors that fall into a small disc, under natural Diophantine conditions on the shift. Furthermore, we show that the pair correlation function is Poissonian for <jats:italic>any</jats:italic> irrational shift in dimension 3 and higher, including well-approximable vectors. Convergence in distribution was already proved in the work of Strömbergsson and the second author [The distribution of free path lengths in the periodic Lorentz gas and related lattice point problems. <jats:italic>Ann. of Math. (2)</jats:italic>172 (2010), 1949–2033], and the principal step in the extension to convergence of moments is an escape of mass estimate for averages over embedded <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000312_inline1.png\\\"/> <jats:tex-math> $\\\\operatorname {SL}(d,\\\\mathbb {R})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-horospheres in the space of affine lattices.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/etds.2024.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了在移位的自然戴奥芬汀条件下,仿射网格向量落入小圆盘的方向数矩的收敛性。此外,我们还证明,对于维度 3 及更高的任何无理平移,包括可近似的向量,对相关函数都是泊松的。分布的收敛性在斯特罗姆伯格森和第二作者的著作[周期洛伦兹气体中自由路径长度的分布及相关晶格点问题。Ann. of Math. (2)172 (2010), 1949-2033],而扩展到时刻收敛的主要步骤是对仿射网格空间中嵌入 $\operatorname {SL}(d,\mathbb {R})$ -horospheres 的平均值进行质量逃逸估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Poissonian pair correlation for directions in multi-dimensional affine lattices and escape of mass estimates for embedded horospheres
We prove the convergence of moments of the number of directions of affine lattice vectors that fall into a small disc, under natural Diophantine conditions on the shift. Furthermore, we show that the pair correlation function is Poissonian for any irrational shift in dimension 3 and higher, including well-approximable vectors. Convergence in distribution was already proved in the work of Strömbergsson and the second author [The distribution of free path lengths in the periodic Lorentz gas and related lattice point problems. Ann. of Math. (2)172 (2010), 1949–2033], and the principal step in the extension to convergence of moments is an escape of mass estimate for averages over embedded $\operatorname {SL}(d,\mathbb {R})$ -horospheres in the space of affine lattices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信