Weighted topological pressure revisited

Pub Date : 2024-05-08 DOI:10.1017/etds.2024.35
NIMA ALIBABAEI
{"title":"Weighted topological pressure revisited","authors":"NIMA ALIBABAEI","doi":"10.1017/etds.2024.35","DOIUrl":null,"url":null,"abstract":"Feng and Huang [Variational principle for weighted topological pressure. <jats:italic>J. Math. Pures Appl. (9)</jats:italic>106 (2016), 411–452] introduced weighted topological entropy and pressure for factor maps between dynamical systems and established its variational principle. Tsukamoto [New approach to weighted topological entropy and pressure. <jats:italic>Ergod. Th. &amp; Dynam. Sys.</jats:italic>43 (2023), 1004–1034] redefined those invariants quite differently for the simplest case and showed via the variational principle that the two definitions coincide. We generalize Tsukamoto’s approach, redefine the weighted topological entropy and pressure for higher dimensions, and prove the variational principle. Our result allows for an elementary calculation of the Hausdorff dimension of affine-invariant sets such as self-affine sponges and certain sofic sets that reside in Euclidean space of arbitrary dimension.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Feng and Huang [Variational principle for weighted topological pressure. J. Math. Pures Appl. (9)106 (2016), 411–452] introduced weighted topological entropy and pressure for factor maps between dynamical systems and established its variational principle. Tsukamoto [New approach to weighted topological entropy and pressure. Ergod. Th. & Dynam. Sys.43 (2023), 1004–1034] redefined those invariants quite differently for the simplest case and showed via the variational principle that the two definitions coincide. We generalize Tsukamoto’s approach, redefine the weighted topological entropy and pressure for higher dimensions, and prove the variational principle. Our result allows for an elementary calculation of the Hausdorff dimension of affine-invariant sets such as self-affine sponges and certain sofic sets that reside in Euclidean space of arbitrary dimension.
分享
查看原文
重访加权拓扑压力
Feng and Huang [Variational principle for weighted topological pressure.J. Math.Pures Appl. (9)106 (2016),411-452] 引入了动态系统间因子映射的加权拓扑熵和压力,并建立了其变分原理。Tsukamoto [New approach to weighted topological entropy and pressure.Ergod.Th. & Dynam.Sys.43(2023),1004-1034] 对最简单情况下的这些不变式进行了完全不同的重新定义,并通过变分原理证明这两个定义是重合的。我们推广了塚本的方法,重新定义了更高维度的加权拓扑熵和压力,并证明了变分原理。我们的结果允许对仿射不变集的豪斯多夫维度进行基本计算,如自仿射海绵和驻留在任意维度欧几里得空间中的某些索菲克集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信