European Journal of Combinatorics最新文献

筛选
英文 中文
Degree conditions for Ramsey goodness of paths 拉姆齐良好路径的程度条件
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-10-18 DOI: 10.1016/j.ejc.2024.104082
Lucas Aragão , João Pedro Marciano , Walner Mendonça
{"title":"Degree conditions for Ramsey goodness of paths","authors":"Lucas Aragão ,&nbsp;João Pedro Marciano ,&nbsp;Walner Mendonça","doi":"10.1016/j.ejc.2024.104082","DOIUrl":"10.1016/j.ejc.2024.104082","url":null,"abstract":"<div><div>A classical result of Chvátal implies that if <span><math><mrow><mi>n</mi><mo>≥</mo><mrow><mo>(</mo><mi>r</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>t</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span>, then any colouring of the edges of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> in red and blue contains either a monochromatic red <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> or a monochromatic blue <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>. We study a natural generalisation of his result, determining the exact minimum degree condition for a graph <span><math><mi>G</mi></math></span> on <span><math><mrow><mi>n</mi><mo>=</mo><mrow><mo>(</mo><mi>r</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>t</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span> vertices which guarantees that the same Ramsey property holds in <span><math><mi>G</mi></math></span>. In particular, using a slight generalisation of a result of Haxell, we show that <span><math><mrow><mi>δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mi>n</mi><mo>−</mo><mfenced><mrow><mi>t</mi><mo>/</mo><mn>2</mn></mrow></mfenced></mrow></math></span> suffices, and that this bound is best possible. We also use a classical result of Bollobás, Erdős, and Straus to prove a tight minimum degree condition in the case <span><math><mrow><mi>r</mi><mo>=</mo><mn>3</mn></mrow></math></span> for all <span><math><mrow><mi>n</mi><mo>≥</mo><mn>2</mn><mi>t</mi><mo>−</mo><mn>1</mn></mrow></math></span>.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104082"},"PeriodicalIF":1.0,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142533813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the faces of unigraphic 3-polytopes 关于单图式 3 多面体的面
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-10-16 DOI: 10.1016/j.ejc.2024.104081
Riccardo W. Maffucci
{"title":"On the faces of unigraphic 3-polytopes","authors":"Riccardo W. Maffucci","doi":"10.1016/j.ejc.2024.104081","DOIUrl":"10.1016/j.ejc.2024.104081","url":null,"abstract":"<div><div>A 3-polytope is a 3-connected, planar graph. It is called unigraphic if it does not share its vertex degree sequence with any other 3-polytope, up to graph isomorphism. The classification of unigraphic 3-polytopes appears to be a difficult problem.</div><div>In this paper we prove that, apart from pyramids, all unigraphic 3-polytopes have no <span><math><mi>n</mi></math></span>-gonal faces for <span><math><mrow><mi>n</mi><mo>≥</mo><mn>10</mn></mrow></math></span>. Our method involves defining several planar graph transformations on a given 3-polytope containing an <span><math><mi>n</mi></math></span>-gonal face with <span><math><mrow><mi>n</mi><mo>≥</mo><mn>10</mn></mrow></math></span>. The delicate part is to prove that, for every such 3-polytope, at least one of these transformations both preserves 3-connectivity, and is not an isomorphism.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104081"},"PeriodicalIF":1.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bounded unique representation bases for the integers 整数的有界唯一表示基
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-10-16 DOI: 10.1016/j.ejc.2024.104080
Yong-Gao Chen, Jin-Hui Fang
{"title":"Bounded unique representation bases for the integers","authors":"Yong-Gao Chen,&nbsp;Jin-Hui Fang","doi":"10.1016/j.ejc.2024.104080","DOIUrl":"10.1016/j.ejc.2024.104080","url":null,"abstract":"&lt;div&gt;&lt;div&gt;For a nonempty set &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; of integers and an integer &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, let &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; be the number of representations of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, and let &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; be the number of representations of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. Erdős and Turán (1941) posed the profound conjecture: if &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is a set of positive integers such that &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for all sufficiently large &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, then &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is unbounded. Nešetřil and Serra (2004) introduced the notion of bounded sets and confirmed the Erdős–Turán conjecture for all bounded bases. Nathanson (2003) considered the existence of the set &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; with logarithmic growth such that &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for all integers &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. In this paper, we prove that, for any positive function &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; as &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mi&gt;∞&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, there is a bounded set &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; of integers such that &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for all integers &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for all positi","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104080"},"PeriodicalIF":1.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Induced subgraph density. II. Sparse and dense sets in cographs 诱导子图密度II.cographs 中的稀疏集和密集集
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-10-09 DOI: 10.1016/j.ejc.2024.104075
Jacob Fox , Tung Nguyen , Alex Scott , Paul Seymour
{"title":"Induced subgraph density. II. Sparse and dense sets in cographs","authors":"Jacob Fox ,&nbsp;Tung Nguyen ,&nbsp;Alex Scott ,&nbsp;Paul Seymour","doi":"10.1016/j.ejc.2024.104075","DOIUrl":"10.1016/j.ejc.2024.104075","url":null,"abstract":"&lt;div&gt;&lt;div&gt;A well-known theorem of Rödl says that for every graph &lt;span&gt;&lt;math&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, and every &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;ɛ&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, there exists &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;δ&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; such that if &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; does not contain an induced copy of &lt;span&gt;&lt;math&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, then there exists &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mo&gt;⊆&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mi&gt;δ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; such that one of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;¯&lt;/mo&gt;&lt;/mover&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; has edge-density at most &lt;span&gt;&lt;math&gt;&lt;mi&gt;ɛ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. But how does &lt;span&gt;&lt;math&gt;&lt;mi&gt;δ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; depend on &lt;span&gt;&lt;math&gt;&lt;mi&gt;ϵ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;? Fox and Sudakov conjectured that the dependence is at most polynomial: that for all &lt;span&gt;&lt;math&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; there exists &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; such that for all &lt;span&gt;&lt;math&gt;&lt;mi&gt;ɛ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;ɛ&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, Rödl’s theorem holds with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;δ&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;ɛ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. This conjecture implies the Erdős–Hajnal conjecture, and until now it had not been verified for any non-trivial graphs &lt;span&gt;&lt;math&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. Our first result shows that it is true when &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. Indeed, in that case we can take &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;δ&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;ɛ&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, and insist that one of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;¯&lt;/mo&gt;&lt;/mover&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; has maximum degree at most &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;ɛ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;).&lt;/div&gt;&lt;div&gt;Second, we will show that every graph &lt;span&gt;&lt;math&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; that can be obtained by substitution from copies of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; satisfies the Fox–Sudakov conjecture. To prove this, we need to work with a stronger property. Let us say &lt;span&gt;&lt;math&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is &lt;em&gt;viral&lt;/em&gt; if there exists &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; such that for all &lt;span&gt;&lt;math&gt;&lt;mi&gt;ɛ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;ɛ&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;/","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104075"},"PeriodicalIF":1.0,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142423576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The diameter of randomly twisted hypercubes 随机扭曲超立方体的直径
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-10-09 DOI: 10.1016/j.ejc.2024.104078
Lucas Aragão , Maurício Collares , Gabriel Dahia , João Pedro Marciano
{"title":"The diameter of randomly twisted hypercubes","authors":"Lucas Aragão ,&nbsp;Maurício Collares ,&nbsp;Gabriel Dahia ,&nbsp;João Pedro Marciano","doi":"10.1016/j.ejc.2024.104078","DOIUrl":"10.1016/j.ejc.2024.104078","url":null,"abstract":"<div><div>The <span><math><mi>n</mi></math></span>-dimensional random twisted hypercube <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is constructed recursively by taking two instances of <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span>, with any joint distribution, and adding a random perfect matching between their vertex sets. Benjamini, Dikstein, Gross, and Zhukovskii showed that its diameter is <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>n</mi><mo>log</mo><mo>log</mo><mo>log</mo><mi>n</mi><mo>/</mo><mo>log</mo><mo>log</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> with high probability and at least <span><math><mrow><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>/</mo><msub><mrow><mo>log</mo></mrow><mrow><mn>2</mn></mrow></msub><mi>n</mi></mrow></math></span>. We improve their upper bound by showing that <span><math><mrow><mi>diam</mi><mrow><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mrow><mn>1</mn><mo>+</mo><mi>o</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mfrac><mrow><mi>n</mi></mrow><mrow><msub><mrow><mo>log</mo></mrow><mrow><mn>2</mn></mrow></msub><mi>n</mi></mrow></mfrac></mrow></math></span> with high probability.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104078"},"PeriodicalIF":1.0,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142423587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intersection density of transitive groups with small cyclic point stabilizers 具有小循环点稳定子的传递群的交集密度
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-10-07 DOI: 10.1016/j.ejc.2024.104079
Ademir Hujdurović , István Kovács , Klavdija Kutnar , Dragan Marušič
{"title":"Intersection density of transitive groups with small cyclic point stabilizers","authors":"Ademir Hujdurović ,&nbsp;István Kovács ,&nbsp;Klavdija Kutnar ,&nbsp;Dragan Marušič","doi":"10.1016/j.ejc.2024.104079","DOIUrl":"10.1016/j.ejc.2024.104079","url":null,"abstract":"<div><div>For a permutation group <span><math><mi>G</mi></math></span> acting on a set <span><math><mi>V</mi></math></span>, a subset <span><math><mi>F</mi></math></span> of <span><math><mi>G</mi></math></span> is said to be an <em>intersecting set</em> if for every pair of elements <span><math><mrow><mi>g</mi><mo>,</mo><mi>h</mi><mo>∈</mo><mi>F</mi></mrow></math></span> there exists <span><math><mrow><mi>v</mi><mo>∈</mo><mi>V</mi></mrow></math></span> such that <span><math><mrow><mi>g</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>=</mo><mi>h</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span>. The <em>intersection density</em> <span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of a transitive permutation group <span><math><mi>G</mi></math></span> is the maximum value of the quotient <span><math><mrow><mrow><mo>|</mo><mi>F</mi><mo>|</mo></mrow><mo>/</mo><mrow><mo>|</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>|</mo></mrow></mrow></math></span> where <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>v</mi></mrow></msub></math></span> is a stabilizer of a point <span><math><mrow><mi>v</mi><mo>∈</mo><mi>V</mi></mrow></math></span> and <span><math><mi>F</mi></math></span> runs over all intersecting sets in <span><math><mi>G</mi></math></span>. If <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>v</mi></mrow></msub></math></span> is a largest intersecting set in <span><math><mi>G</mi></math></span> then <span><math><mi>G</mi></math></span> is said to have the <em>Erdős-Ko-Rado (EKR)-property</em>. This paper is devoted to the study of transitive permutation groups, with point stabilizers of prime order with a special emphasis given to orders 2 and 3, which do not have the EKR-property. Among others, constructions of an infinite family of transitive permutation groups having point stabilizer of order 3 with intersection density <span><math><mrow><mn>4</mn><mo>/</mo><mn>3</mn></mrow></math></span> and of infinite families of transitive permutation groups having point stabilizer of order 3 with arbitrarily large intersection density are given.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104079"},"PeriodicalIF":1.0,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142423575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Turán numbers of ordered tight hyperpaths 有序紧密超路径的图兰数
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-10-03 DOI: 10.1016/j.ejc.2024.104070
John P. Bright, Kevin G. Milans, Jackson Porter
{"title":"Turán numbers of ordered tight hyperpaths","authors":"John P. Bright,&nbsp;Kevin G. Milans,&nbsp;Jackson Porter","doi":"10.1016/j.ejc.2024.104070","DOIUrl":"10.1016/j.ejc.2024.104070","url":null,"abstract":"<div><div>An <em>ordered hypergraph</em> is a hypergraph <span><math><mi>G</mi></math></span> whose vertex set <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is linearly ordered. We find the Turán numbers for the <span><math><mi>r</mi></math></span>-uniform <span><math><mi>s</mi></math></span>-vertex tight path <span><math><msubsup><mrow><mover><mrow><mi>P</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>s</mi></mrow><mrow><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></mrow></msubsup></math></span> (with vertices in the natural order) exactly when <span><math><mrow><mi>r</mi><mo>≤</mo><mi>s</mi><mo>&lt;</mo><mn>2</mn><mi>r</mi></mrow></math></span> and <span><math><mi>n</mi></math></span> is even; our results imply <span><math><mrow><mover><mrow><mi>ex</mi></mrow><mo>→</mo></mover><mrow><mo>(</mo><mi>n</mi><mo>,</mo><msubsup><mrow><mover><mrow><mi>P</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>s</mi></mrow><mrow><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></mrow></msubsup><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>s</mi><mo>−</mo><mi>r</mi></mrow></msup></mrow></mfrac><mo>+</mo><mi>o</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mo>)</mo></mrow><mfenced><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mi>r</mi></mrow></mfrac></mrow></mfenced></mrow></math></span> when <span><math><mrow><mi>r</mi><mo>≤</mo><mi>s</mi><mo>&lt;</mo><mn>2</mn><mi>r</mi></mrow></math></span>. When <span><math><mrow><mi>s</mi><mo>≥</mo><mn>2</mn><mi>r</mi></mrow></math></span>, the asymptotics of <span><math><mrow><mover><mrow><mi>ex</mi></mrow><mo>→</mo></mover><mrow><mo>(</mo><mi>n</mi><mo>,</mo><msubsup><mrow><mover><mrow><mi>P</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>s</mi></mrow><mrow><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></mrow></msubsup><mo>)</mo></mrow></mrow></math></span> remain open. For <span><math><mrow><mi>r</mi><mo>=</mo><mn>3</mn></mrow></math></span>, we give a construction of an <span><math><mi>r</mi></math></span>-uniform <span><math><mi>n</mi></math></span>-vertex hypergraph not containing <span><math><msubsup><mrow><mover><mrow><mi>P</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>s</mi></mrow><mrow><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></mrow></msubsup></math></span> which we conjecture to be asymptotically extremal.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104070"},"PeriodicalIF":1.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142423708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boundary rigidity of 3D CAT(0) cube complexes 三维 CAT(0) 立方体复合物的边界刚度
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-10-01 DOI: 10.1016/j.ejc.2024.104077
John Haslegrave , Alex Scott , Youri Tamitegama , Jane Tan
{"title":"Boundary rigidity of 3D CAT(0) cube complexes","authors":"John Haslegrave ,&nbsp;Alex Scott ,&nbsp;Youri Tamitegama ,&nbsp;Jane Tan","doi":"10.1016/j.ejc.2024.104077","DOIUrl":"10.1016/j.ejc.2024.104077","url":null,"abstract":"<div><div>The boundary rigidity problem is a classical question from Riemannian geometry: if <span><math><mrow><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></mrow></math></span> is a Riemannian manifold with smooth boundary, is the geometry of <span><math><mi>M</mi></math></span> determined up to isometry by the metric <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> induced on the boundary <span><math><mrow><mi>∂</mi><mi>M</mi></mrow></math></span>? In this paper, we consider a discrete version of this problem: can we determine the combinatorial type of a finite cube complex from its boundary distances? As in the continuous case, reconstruction is not possible in general, but one expects a positive answer under suitable contractibility and non-positive curvature conditions. Indeed, in two dimensions Haslegrave gave a positive answer to this question when the complex is a finite quadrangulation of the disc with no internal vertices of degree less than 4. We prove a 3-dimensional generalisation of this result: the combinatorial type of a finite CAT(0) cube complex with an embedding in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> can be reconstructed from its boundary distances. Additionally, we prove a direct strengthening of Haslegrave’s result: the combinatorial type of any finite 2-dimensional CAT(0) cube complex can be reconstructed from its boundary distances.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104077"},"PeriodicalIF":1.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142359298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decks of rooted binary trees 有根二叉树甲板
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-09-25 DOI: 10.1016/j.ejc.2024.104076
Ann Clifton , Éva Czabarka , Audace A.V. Dossou-Olory , Kevin Liu , Sarah Loeb , Utku Okur , László Székely , Kristina Wicke
{"title":"Decks of rooted binary trees","authors":"Ann Clifton ,&nbsp;Éva Czabarka ,&nbsp;Audace A.V. Dossou-Olory ,&nbsp;Kevin Liu ,&nbsp;Sarah Loeb ,&nbsp;Utku Okur ,&nbsp;László Székely ,&nbsp;Kristina Wicke","doi":"10.1016/j.ejc.2024.104076","DOIUrl":"10.1016/j.ejc.2024.104076","url":null,"abstract":"<div><div>We consider extremal problems related to decks and multidecks of rooted binary trees (a.k.a. rooted phylogenetic tree shapes). Here, the deck (resp. multideck) of a tree <span><math><mi>T</mi></math></span> refers to the set (resp. multiset) of leaf-induced binary subtrees of <span><math><mi>T</mi></math></span>. On the one hand, we consider the reconstruction of trees from their (multi)decks. We give lower and upper bounds on the minimum (multi)deck size required to uniquely encode a rooted binary tree on <span><math><mi>n</mi></math></span> leaves. On the other hand, we consider problems related to deck cardinalities. In particular, we characterize trees with minimum-size as well as maximum-size decks. Finally, we present some exhaustive computations for <span><math><mi>k</mi></math></span>-universal trees, i.e., rooted binary trees that contain all <span><math><mi>k</mi></math></span>-leaf rooted binary trees as leaf-induced subtrees.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104076"},"PeriodicalIF":1.0,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142318960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Induced subgraphs and tree decompositions XIV. Non-adjacent neighbours in a hole 诱导子图和树分解 XIV.洞中的非相邻邻图
IF 1 3区 数学
European Journal of Combinatorics Pub Date : 2024-09-24 DOI: 10.1016/j.ejc.2024.104074
Maria Chudnovsky , Sepehr Hajebi , Sophie Spirkl
{"title":"Induced subgraphs and tree decompositions XIV. Non-adjacent neighbours in a hole","authors":"Maria Chudnovsky ,&nbsp;Sepehr Hajebi ,&nbsp;Sophie Spirkl","doi":"10.1016/j.ejc.2024.104074","DOIUrl":"10.1016/j.ejc.2024.104074","url":null,"abstract":"<div><div>A <em>clock</em> is a graph consisting of an induced cycle <span><math><mi>C</mi></math></span> and a vertex not in <span><math><mi>C</mi></math></span> with at least two non-adjacent neighbours in <span><math><mi>C</mi></math></span>. We show that every clock-free graph of large treewidth contains a “basic obstruction” of large treewidth as an induced subgraph: a complete graph, a subdivision of a wall, or the line graph of a subdivision of a wall.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104074"},"PeriodicalIF":1.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0195669824001598/pdfft?md5=fa98c8a13265d848775c4b52beb995da&pid=1-s2.0-S0195669824001598-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142315136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信