Edge mappings of graphs: Turán type parameters

IF 1 3区 数学 Q1 MATHEMATICS
Yair Caro , Balázs Patkós , Zsolt Tuza , Máté Vizer
{"title":"Edge mappings of graphs: Turán type parameters","authors":"Yair Caro ,&nbsp;Balázs Patkós ,&nbsp;Zsolt Tuza ,&nbsp;Máté Vizer","doi":"10.1016/j.ejc.2025.104140","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we address problems related to parameters concerning edge mappings of graphs. The quantity <span><math><mrow><mi>h</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is defined to be the maximum number of edges in an <span><math><mi>n</mi></math></span>-vertex graph <span><math><mi>H</mi></math></span> such that there exists a mapping <span><math><mrow><mi>f</mi><mo>:</mo><mi>E</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>→</mo><mi>E</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow><mo>≠</mo><mi>e</mi></mrow></math></span> for all <span><math><mrow><mi>e</mi><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> and further in all copies <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> of <span><math><mi>G</mi></math></span> in <span><math><mi>H</mi></math></span> there exists <span><math><mrow><mi>e</mi><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></mrow></mrow></math></span>. Among other results, we determine <span><math><mrow><mi>h</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> when <span><math><mi>G</mi></math></span> is a matching and <span><math><mi>n</mi></math></span> is large enough.</div><div>As a related concept, we say that <span><math><mi>H</mi></math></span> is unavoidable for <span><math><mi>G</mi></math></span> if for any mapping <span><math><mrow><mi>f</mi><mo>:</mo><mi>E</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>→</mo><mi>E</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow><mo>≠</mo><mi>e</mi></mrow></math></span> there exists a copy <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> of <span><math><mi>G</mi></math></span> in <span><math><mi>H</mi></math></span> such that <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow><mo>∉</mo><mi>E</mi><mrow><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></mrow></mrow></math></span> for all <span><math><mrow><mi>e</mi><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></mrow></mrow></math></span>. The set of minimal unavoidable graphs for <span><math><mi>G</mi></math></span> is denoted by <span><math><mrow><mi>M</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. We prove that if <span><math><mi>F</mi></math></span> is a forest, then <span><math><mrow><mi>M</mi><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> is finite if and only if <span><math><mi>F</mi></math></span> is a matching, and we conjecture that for all non-forest graphs <span><math><mi>G</mi></math></span>, the set <span><math><mrow><mi>M</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is infinite.</div><div>Several other parameters are defined with basic results proved. Lots of open problems remain.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"127 ","pages":"Article 104140"},"PeriodicalIF":1.0000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000228","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we address problems related to parameters concerning edge mappings of graphs. The quantity h(n,G) is defined to be the maximum number of edges in an n-vertex graph H such that there exists a mapping f:E(H)E(H) with f(e)e for all eE(H) and further in all copies G of G in H there exists eE(G) with f(e)E(G). Among other results, we determine h(n,G) when G is a matching and n is large enough.
As a related concept, we say that H is unavoidable for G if for any mapping f:E(H)E(H) with f(e)e there exists a copy G of G in H such that f(e)E(G) for all eE(G). The set of minimal unavoidable graphs for G is denoted by M(G). We prove that if F is a forest, then M(F) is finite if and only if F is a matching, and we conjecture that for all non-forest graphs G, the set M(G) is infinite.
Several other parameters are defined with basic results proved. Lots of open problems remain.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信