非平凡的r明智的同意家庭

IF 1 3区 数学 Q1 MATHEMATICS
Peter Frankl , Andrey Kupavskii
{"title":"非平凡的r明智的同意家庭","authors":"Peter Frankl ,&nbsp;Andrey Kupavskii","doi":"10.1016/j.ejc.2025.104129","DOIUrl":null,"url":null,"abstract":"<div><div>A family of subsets of <span><math><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></math></span> is <span><math><mi>r</mi></math></span>-wise agreeing if for any <span><math><mi>r</mi></math></span> sets from the family there is an element <span><math><mi>x</mi></math></span> that is either contained in all or contained in none of the <span><math><mi>r</mi></math></span> sets. The study of such families is motivated by questions in discrete optimization. In this paper, we determine the size of the largest non-trivial <span><math><mi>r</mi></math></span>-wise agreeing family. This can be seen as a generalization of the classical Brace–Daykin theorem.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"126 ","pages":"Article 104129"},"PeriodicalIF":1.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-trivial r-wise agreeing families\",\"authors\":\"Peter Frankl ,&nbsp;Andrey Kupavskii\",\"doi\":\"10.1016/j.ejc.2025.104129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A family of subsets of <span><math><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></math></span> is <span><math><mi>r</mi></math></span>-wise agreeing if for any <span><math><mi>r</mi></math></span> sets from the family there is an element <span><math><mi>x</mi></math></span> that is either contained in all or contained in none of the <span><math><mi>r</mi></math></span> sets. The study of such families is motivated by questions in discrete optimization. In this paper, we determine the size of the largest non-trivial <span><math><mi>r</mi></math></span>-wise agreeing family. This can be seen as a generalization of the classical Brace–Daykin theorem.</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"126 \",\"pages\":\"Article 104129\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669825000113\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000113","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

[n]的子集族是r明智的,如果对于族中的任何r个集合存在一个元素x,该元素x要么包含在所有r个集合中,要么不包含在任何r个集合中。这类族的研究是由离散优化问题驱动的。在本文中,我们确定了最大的非平凡r-wise同意族的大小。这可以看作是经典布雷斯-戴金定理的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-trivial r-wise agreeing families
A family of subsets of [n] is r-wise agreeing if for any r sets from the family there is an element x that is either contained in all or contained in none of the r sets. The study of such families is motivated by questions in discrete optimization. In this paper, we determine the size of the largest non-trivial r-wise agreeing family. This can be seen as a generalization of the classical Brace–Daykin theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信