图的边缘映射:Turán类型参数

IF 1 3区 数学 Q1 MATHEMATICS
Yair Caro , Balázs Patkós , Zsolt Tuza , Máté Vizer
{"title":"图的边缘映射:Turán类型参数","authors":"Yair Caro ,&nbsp;Balázs Patkós ,&nbsp;Zsolt Tuza ,&nbsp;Máté Vizer","doi":"10.1016/j.ejc.2025.104140","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we address problems related to parameters concerning edge mappings of graphs. The quantity <span><math><mrow><mi>h</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is defined to be the maximum number of edges in an <span><math><mi>n</mi></math></span>-vertex graph <span><math><mi>H</mi></math></span> such that there exists a mapping <span><math><mrow><mi>f</mi><mo>:</mo><mi>E</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>→</mo><mi>E</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow><mo>≠</mo><mi>e</mi></mrow></math></span> for all <span><math><mrow><mi>e</mi><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> and further in all copies <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> of <span><math><mi>G</mi></math></span> in <span><math><mi>H</mi></math></span> there exists <span><math><mrow><mi>e</mi><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></mrow></mrow></math></span>. Among other results, we determine <span><math><mrow><mi>h</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> when <span><math><mi>G</mi></math></span> is a matching and <span><math><mi>n</mi></math></span> is large enough.</div><div>As a related concept, we say that <span><math><mi>H</mi></math></span> is unavoidable for <span><math><mi>G</mi></math></span> if for any mapping <span><math><mrow><mi>f</mi><mo>:</mo><mi>E</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>→</mo><mi>E</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow><mo>≠</mo><mi>e</mi></mrow></math></span> there exists a copy <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> of <span><math><mi>G</mi></math></span> in <span><math><mi>H</mi></math></span> such that <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow><mo>∉</mo><mi>E</mi><mrow><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></mrow></mrow></math></span> for all <span><math><mrow><mi>e</mi><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></mrow></mrow></math></span>. The set of minimal unavoidable graphs for <span><math><mi>G</mi></math></span> is denoted by <span><math><mrow><mi>M</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. We prove that if <span><math><mi>F</mi></math></span> is a forest, then <span><math><mrow><mi>M</mi><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> is finite if and only if <span><math><mi>F</mi></math></span> is a matching, and we conjecture that for all non-forest graphs <span><math><mi>G</mi></math></span>, the set <span><math><mrow><mi>M</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is infinite.</div><div>Several other parameters are defined with basic results proved. Lots of open problems remain.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"127 ","pages":"Article 104140"},"PeriodicalIF":1.0000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Edge mappings of graphs: Turán type parameters\",\"authors\":\"Yair Caro ,&nbsp;Balázs Patkós ,&nbsp;Zsolt Tuza ,&nbsp;Máté Vizer\",\"doi\":\"10.1016/j.ejc.2025.104140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we address problems related to parameters concerning edge mappings of graphs. The quantity <span><math><mrow><mi>h</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is defined to be the maximum number of edges in an <span><math><mi>n</mi></math></span>-vertex graph <span><math><mi>H</mi></math></span> such that there exists a mapping <span><math><mrow><mi>f</mi><mo>:</mo><mi>E</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>→</mo><mi>E</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow><mo>≠</mo><mi>e</mi></mrow></math></span> for all <span><math><mrow><mi>e</mi><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> and further in all copies <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> of <span><math><mi>G</mi></math></span> in <span><math><mi>H</mi></math></span> there exists <span><math><mrow><mi>e</mi><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></mrow></mrow></math></span>. Among other results, we determine <span><math><mrow><mi>h</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> when <span><math><mi>G</mi></math></span> is a matching and <span><math><mi>n</mi></math></span> is large enough.</div><div>As a related concept, we say that <span><math><mi>H</mi></math></span> is unavoidable for <span><math><mi>G</mi></math></span> if for any mapping <span><math><mrow><mi>f</mi><mo>:</mo><mi>E</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>→</mo><mi>E</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow><mo>≠</mo><mi>e</mi></mrow></math></span> there exists a copy <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> of <span><math><mi>G</mi></math></span> in <span><math><mi>H</mi></math></span> such that <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow><mo>∉</mo><mi>E</mi><mrow><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></mrow></mrow></math></span> for all <span><math><mrow><mi>e</mi><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></mrow></mrow></math></span>. The set of minimal unavoidable graphs for <span><math><mi>G</mi></math></span> is denoted by <span><math><mrow><mi>M</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. We prove that if <span><math><mi>F</mi></math></span> is a forest, then <span><math><mrow><mi>M</mi><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> is finite if and only if <span><math><mi>F</mi></math></span> is a matching, and we conjecture that for all non-forest graphs <span><math><mi>G</mi></math></span>, the set <span><math><mrow><mi>M</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is infinite.</div><div>Several other parameters are defined with basic results proved. Lots of open problems remain.</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"127 \",\"pages\":\"Article 104140\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669825000228\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000228","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们讨论了与图的边映射有关的参数问题。量h(n,G)定义为n顶点图h中存在一个映射f:E(h)→E(h)且f(E)≠E的最大边数,对于所有E∈E(h),并且在h中G的所有拷贝G ‘中存在E∈E(G ’)与f(E)∈E(G ')的映射f:E(h)→E(h)。在其他结果中,当G是匹配且n足够大时,我们确定h(n,G)。作为一个相关的概念,我们说H G如果任何映射f是不可避免的:E (H)→E (H)和f (E)≠E存在G”副本等H G f (E)∉E (G) E∈E (G)。G的最小不可避免图集用M(G)表示。证明了如果F是一个森林,那么M(F)是有限的当且仅当F是一个匹配,并且我们推测对于所有非森林图G,集合M(G)是无限的。定义了其他几个参数,并证明了基本结果。许多悬而未决的问题依然存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Edge mappings of graphs: Turán type parameters
In this paper, we address problems related to parameters concerning edge mappings of graphs. The quantity h(n,G) is defined to be the maximum number of edges in an n-vertex graph H such that there exists a mapping f:E(H)E(H) with f(e)e for all eE(H) and further in all copies G of G in H there exists eE(G) with f(e)E(G). Among other results, we determine h(n,G) when G is a matching and n is large enough.
As a related concept, we say that H is unavoidable for G if for any mapping f:E(H)E(H) with f(e)e there exists a copy G of G in H such that f(e)E(G) for all eE(G). The set of minimal unavoidable graphs for G is denoted by M(G). We prove that if F is a forest, then M(F) is finite if and only if F is a matching, and we conjecture that for all non-forest graphs G, the set M(G) is infinite.
Several other parameters are defined with basic results proved. Lots of open problems remain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信