{"title":"Spectral Turán problem of non-bipartite graphs: Forbidden books","authors":"Ruifang Liu, Lu Miao","doi":"10.1016/j.ejc.2025.104136","DOIUrl":null,"url":null,"abstract":"<div><div>A book graph <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> is a set of <span><math><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></math></span> triangles with a common edge, where <span><math><mrow><mi>r</mi><mo>≥</mo><mn>0</mn></mrow></math></span> is an integer. Zhai and Lin (2023) proved that for <span><math><mrow><mi>n</mi><mo>≥</mo><mfrac><mrow><mn>13</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>r</mi></mrow></math></span>, if <span><math><mi>G</mi></math></span> is a <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>-free graph of order <span><math><mi>n</mi></math></span>, then <span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>ρ</mi><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mn>2</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span>, with equality if and only if <span><math><mrow><mi>G</mi><mo>≅</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mn>2</mn></mrow></msub></mrow></math></span>. Note that the extremal graph <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mn>2</mn></mrow></msub></math></span> is bipartite. Motivated by the above elegant result, we investigate the spectral Turán problem of non-bipartite <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>-free graphs of order <span><math><mi>n</mi></math></span>. For <span><math><mrow><mi>r</mi><mo>=</mo><mn>0</mn></mrow></math></span>, Lin et al. (2021) provided a complete solution and proved a nice result: If <span><math><mi>G</mi></math></span> is a non-bipartite triangle-free graph of order <span><math><mi>n</mi></math></span>, then <span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>ρ</mi><mrow><mo>(</mo><mrow><mi>S</mi><msub><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow><mo>,</mo><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow></mrow></msub></mrow><mo>)</mo></mrow></mrow></math></span>, with equality if and only if <span><math><mrow><mi>G</mi><mo>≅</mo><mi>S</mi><msub><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow><mo>,</mo><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow></mrow></msub></mrow></math></span>, where <span><math><mrow><mi>S</mi><msub><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow><mo>,</mo><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow></mrow></msub></mrow></math></span> is the graph obtained from <span><math><msub><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow><mo>,</mo><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow></mrow></msub></math></span> by subdividing an edge.</div><div>For general <span><math><mrow><mi>r</mi><mo>≥</mo><mn>1</mn></mrow></math></span>, let <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow><mo>,</mo><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow></mrow><mrow><mi>r</mi><mo>,</mo><mi>r</mi></mrow></msubsup></math></span> be the graph obtained from <span><math><msub><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>,</mo><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow></mrow></msub></math></span> by adding a new vertex <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> such that <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> has exactly <span><math><mi>r</mi></math></span> neighbors in each part of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>,</mo><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow></mrow></msub></math></span>. By adopting a different technique named the residual index, Chvátal-Hanson theorem and typical spectral extremal methods, we in this paper prove that: If <span><math><mi>G</mi></math></span> is a non-bipartite <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>-free graph of order <span><math><mi>n</mi></math></span>, then <span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>ρ</mi><mrow><mo>(</mo><mrow><msubsup><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow><mo>,</mo><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow></mrow><mrow><mi>r</mi><mo>,</mo><mi>r</mi></mrow></msubsup></mrow><mo>)</mo></mrow></mrow></math></span> , with equality if and only if <span><math><mrow><mi>G</mi><mo>≅</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow><mo>,</mo><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow></mrow><mrow><mi>r</mi><mo>,</mo><mi>r</mi></mrow></msubsup></mrow></math></span>. An interesting phenomenon is that the spectral extremal graphs are completely different for <span><math><mrow><mi>r</mi><mo>=</mo><mn>0</mn></mrow></math></span> and general <span><math><mrow><mi>r</mi><mo>≥</mo><mn>1</mn></mrow></math></span>.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"126 ","pages":"Article 104136"},"PeriodicalIF":1.0000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000186","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A book graph is a set of triangles with a common edge, where is an integer. Zhai and Lin (2023) proved that for , if is a -free graph of order , then , with equality if and only if . Note that the extremal graph is bipartite. Motivated by the above elegant result, we investigate the spectral Turán problem of non-bipartite -free graphs of order . For , Lin et al. (2021) provided a complete solution and proved a nice result: If is a non-bipartite triangle-free graph of order , then , with equality if and only if , where is the graph obtained from by subdividing an edge.
For general , let be the graph obtained from by adding a new vertex such that has exactly neighbors in each part of . By adopting a different technique named the residual index, Chvátal-Hanson theorem and typical spectral extremal methods, we in this paper prove that: If is a non-bipartite -free graph of order , then , with equality if and only if . An interesting phenomenon is that the spectral extremal graphs are completely different for and general .
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.