Spectral Turán problem of non-bipartite graphs: Forbidden books

IF 1 3区 数学 Q1 MATHEMATICS
Ruifang Liu, Lu Miao
{"title":"Spectral Turán problem of non-bipartite graphs: Forbidden books","authors":"Ruifang Liu,&nbsp;Lu Miao","doi":"10.1016/j.ejc.2025.104136","DOIUrl":null,"url":null,"abstract":"<div><div>A book graph <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> is a set of <span><math><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></math></span> triangles with a common edge, where <span><math><mrow><mi>r</mi><mo>≥</mo><mn>0</mn></mrow></math></span> is an integer. Zhai and Lin (2023) proved that for <span><math><mrow><mi>n</mi><mo>≥</mo><mfrac><mrow><mn>13</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>r</mi></mrow></math></span>, if <span><math><mi>G</mi></math></span> is a <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>-free graph of order <span><math><mi>n</mi></math></span>, then <span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>ρ</mi><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mn>2</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span>, with equality if and only if <span><math><mrow><mi>G</mi><mo>≅</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mn>2</mn></mrow></msub></mrow></math></span>. Note that the extremal graph <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mn>2</mn></mrow></msub></math></span> is bipartite. Motivated by the above elegant result, we investigate the spectral Turán problem of non-bipartite <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>-free graphs of order <span><math><mi>n</mi></math></span>. For <span><math><mrow><mi>r</mi><mo>=</mo><mn>0</mn></mrow></math></span>, Lin et al. (2021) provided a complete solution and proved a nice result: If <span><math><mi>G</mi></math></span> is a non-bipartite triangle-free graph of order <span><math><mi>n</mi></math></span>, then <span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>ρ</mi><mrow><mo>(</mo><mrow><mi>S</mi><msub><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow><mo>,</mo><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow></mrow></msub></mrow><mo>)</mo></mrow></mrow></math></span>, with equality if and only if <span><math><mrow><mi>G</mi><mo>≅</mo><mi>S</mi><msub><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow><mo>,</mo><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow></mrow></msub></mrow></math></span>, where <span><math><mrow><mi>S</mi><msub><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow><mo>,</mo><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow></mrow></msub></mrow></math></span> is the graph obtained from <span><math><msub><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow><mo>,</mo><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow></mrow></msub></math></span> by subdividing an edge.</div><div>For general <span><math><mrow><mi>r</mi><mo>≥</mo><mn>1</mn></mrow></math></span>, let <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow><mo>,</mo><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow></mrow><mrow><mi>r</mi><mo>,</mo><mi>r</mi></mrow></msubsup></math></span> be the graph obtained from <span><math><msub><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>,</mo><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow></mrow></msub></math></span> by adding a new vertex <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> such that <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> has exactly <span><math><mi>r</mi></math></span> neighbors in each part of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>,</mo><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow></mrow></msub></math></span>. By adopting a different technique named the residual index, Chvátal-Hanson theorem and typical spectral extremal methods, we in this paper prove that: If <span><math><mi>G</mi></math></span> is a non-bipartite <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>-free graph of order <span><math><mi>n</mi></math></span>, then <span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>ρ</mi><mrow><mo>(</mo><mrow><msubsup><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow><mo>,</mo><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow></mrow><mrow><mi>r</mi><mo>,</mo><mi>r</mi></mrow></msubsup></mrow><mo>)</mo></mrow></mrow></math></span> , with equality if and only if <span><math><mrow><mi>G</mi><mo>≅</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow><mo>,</mo><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow></mrow><mrow><mi>r</mi><mo>,</mo><mi>r</mi></mrow></msubsup></mrow></math></span>. An interesting phenomenon is that the spectral extremal graphs are completely different for <span><math><mrow><mi>r</mi><mo>=</mo><mn>0</mn></mrow></math></span> and general <span><math><mrow><mi>r</mi><mo>≥</mo><mn>1</mn></mrow></math></span>.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"126 ","pages":"Article 104136"},"PeriodicalIF":1.0000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000186","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A book graph Br+1 is a set of r+1 triangles with a common edge, where r0 is an integer. Zhai and Lin (2023) proved that for n132r, if G is a Br+1-free graph of order n, then ρ(G)ρ(Tn,2), with equality if and only if GTn,2. Note that the extremal graph Tn,2 is bipartite. Motivated by the above elegant result, we investigate the spectral Turán problem of non-bipartite Br+1-free graphs of order n. For r=0, Lin et al. (2021) provided a complete solution and proved a nice result: If G is a non-bipartite triangle-free graph of order n, then ρ(G)ρ(SKn12,n12), with equality if and only if GSKn12,n12, where SKn12,n12 is the graph obtained from Kn12,n12 by subdividing an edge.
For general r1, let Kn12,n12r,r be the graph obtained from Kn12,n12 by adding a new vertex v0 such that v0 has exactly r neighbors in each part of Kn12,n12. By adopting a different technique named the residual index, Chvátal-Hanson theorem and typical spectral extremal methods, we in this paper prove that: If G is a non-bipartite Br+1-free graph of order n, then ρ(G)ρ(Kn12,n12r,r) , with equality if and only if GKn12,n12r,r. An interesting phenomenon is that the spectral extremal graphs are completely different for r=0 and general r1.
非二部图的谱Turán问题:禁书
图书图Br+1是r+1个三角形的集合,其中r≥0为整数。Zhai和Lin(2023)证明了当n≥132r时,如果G是n阶的无Br+1图,则ρ(G)≤ρ(Tn,2),且当且仅当G = Tn,2时相等。注意极值图是二部图。基于上述优雅的结果,我们研究了n阶非二部无三角形图的谱Turán问题。对于r=0, Lin et al.(2021)提供了一个完整的解,并证明了一个很好的结果:如果G是n阶非二部无三角形图,则ρ(G)≤ρ(SK⌊n−12⌋,≤n−12 ),当且仅当G≠SK⌊n−12⌋,≤n−12 ,其中SK⌊n−12⌋,≤n−12 是K⌊n−12⌋,≤n−12 通过细分边得到的图。对于一般的r≥1,设K⌊n−12⌋,⌊n−12⌋,r为在K≤n−12⌋,⌊n−12⌋中添加一个新的顶点v0,使v0在K≤n−12⌋的每个部分中恰好有r个邻居得到的图。本文采用残差指数、Chvátal-Hanson定理和典型谱极值方法证明:若G是n阶的非二部无Br+1图,则ρ(G)≤ρ(K⌊n−12⌋,≤n−12⌋,r),且当且仅当G≠K⌊n−12⌋,≤n−12⌋,r时相等。一个有趣的现象是,当r=0和一般r≥1时,谱极值图是完全不同的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信