International Journal for Numerical Methods in Fluids最新文献

筛选
英文 中文
A two-stage reliable computational scheme for stochastic unsteady mixed convection flow of Casson nanofluid 卡松纳米流体随机非稳态混合对流的两阶段可靠计算方案
IF 1.8 4区 工程技术
International Journal for Numerical Methods in Fluids Pub Date : 2024-02-02 DOI: 10.1002/fld.5264
Yasir Nawaz, Muhammad Shoaib Arif, Amna Nazeer, Javeria Nawaz Abbasi, Kamaleldin Abodayeh
{"title":"A two-stage reliable computational scheme for stochastic unsteady mixed convection flow of Casson nanofluid","authors":"Yasir Nawaz,&nbsp;Muhammad Shoaib Arif,&nbsp;Amna Nazeer,&nbsp;Javeria Nawaz Abbasi,&nbsp;Kamaleldin Abodayeh","doi":"10.1002/fld.5264","DOIUrl":"10.1002/fld.5264","url":null,"abstract":"<p>Researchers can incorporate uncertainties in computational fluid dynamics (CFD) that go beyond the inaccuracies caused by numerical discretization thanks to stochastic simulations. This study confirms the validity of current stochastic modeling tools by providing examples of stochastic simulations in conjunction with numerical solutions for incompressible flows. A numerical technique for solving deterministic and stochastic models is developed in this work. Our approach employs the Euler-Maruyama method for stochastic modeling, representing a stochastic version of the third-order explicit-implicit scheme. For the deterministic model, the scheme is third-order accurate. The consistency and stability of the constructed scheme are provided in the mean square sense. The scheme is the predictor–corrector type that is built on two time levels. Moreover, a mathematical model of the Casson nanofluid flow with variable thermal conductivity is given with the effect of the chemical reaction. The appropriate transformations are used to condense the set of partial differential equations (PDEs) down to one that is dimensionless. The scheme is applied for the deterministic and stochastic models of dimensionless flow problems. The velocity profile's deterministic and stochastic behavior are shown using contour plots. Results show that growing values of the thermal mixed convection parameter enhance the velocity profile. This article presents the progress made in stochastic computational fluid dynamics (SCFD) and highlights the energy-related aspects of our discoveries. Our computational approach and stochastic modeling techniques provide new insights into the energy properties of Casson nanofluid flow, specifically regarding the variability of thermal conductivity and chemical processes. Our objective is to clarify the complex interaction of these factors on energy dynamics. This article presents a contemporary summary of the latest SCFD advancements. Additionally, it highlights potential directions for future research and unresolved issues that require attention from the members of the field of computational mathematics.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 5","pages":"719-737"},"PeriodicalIF":1.8,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139667967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiphase lattice Boltzmann flux solver with conservative Allen-Cahn model for modeling high-density-ratio flows 采用保守艾伦-卡恩模型的多相晶格玻尔兹曼流量求解器,用于模拟高密度比流动
IF 1.8 4区 工程技术
International Journal for Numerical Methods in Fluids Pub Date : 2024-01-30 DOI: 10.1002/fld.5265
Z. Chen, Y. H. Sun
{"title":"Multiphase lattice Boltzmann flux solver with conservative Allen-Cahn model for modeling high-density-ratio flows","authors":"Z. Chen,&nbsp;Y. H. Sun","doi":"10.1002/fld.5265","DOIUrl":"10.1002/fld.5265","url":null,"abstract":"<p>In this paper, the Allen-Cahn-Multiphase lattice Boltzmann flux solver (AC-MLBFS) is proposed as a new and effective numerical simulation method for multiphase flows with high density ratios. The MLBFS resolves the macroscopic governing equations with the finite volume method and reconstructs numerical fluxes on the cell interface from local solutions to the lattice Boltzmann equation, which combines the advantages of conventional Navier–Stokes solvers and lattice Boltzmann methods for simulating incompressible multiphase flows while alleviating their limitations. Previous MLBFS-based multiphase solvers performed poorly in mass conservation, which might be caused by the excessive numerical diffusion in the Cahn-Hilliard (CH) model used as the interface tracking algorithm. To resolve this problem, the present method proposes using the conservative Allen-Cahn (AC) model as the interfacial tracking algorithm, which can ease the numerical implementation by removing high order derivative terms and alleviate mass leakage by enforcing local mass conservation in the physical model. Numerical validations will be carried out through benchmark tests at high density ratios and in extreme conditions with large Reynolds or Weber numbers. Through these examples, the accuracy and robustness as well as the mass conservation characteristics of the proposed method are demonstrated.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 5","pages":"701-718"},"PeriodicalIF":1.8,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139667963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of implicit adaptive mesh-free CFD modelling 隐式自适应无网格 CFD 建模评估
IF 1.8 4区 工程技术
International Journal for Numerical Methods in Fluids Pub Date : 2024-01-27 DOI: 10.1002/fld.5266
Tao Zhang, George N. Barakos
{"title":"Assessment of implicit adaptive mesh-free CFD modelling","authors":"Tao Zhang,&nbsp;George N. Barakos","doi":"10.1002/fld.5266","DOIUrl":"10.1002/fld.5266","url":null,"abstract":"<p>This work presents details and assesses implicit and adaptive mesh-free CFD modelling approaches, to alleviate laborious mesh generation in modern CFD processes. A weighted-least-squares-based, mesh-free, discretisation scheme was first derived for the compressible RANS equations, and the implicit dual-time stepping was adopted for improved stability and convergence. A novel weight balancing concept was introduced to improve the mesh-free modelling on highly irregular point clouds. Automatic point cloud generations based on strand and level-set points were also discussed. A novel, polar selection approach, was also introduced to establish high-quality point collocations. The spatial accuracy and convergence properties were validated using 2D and 3D benchmark cases. The impact of irregular point clouds and various point collocation search methods were evaluated in detail. The proposed weight balancing and the polar selection approaches were found capable of improving the mesh-free modelling on highly irregular point clouds. The mesh-free flexibility was then exploited for adaptive modelling. Various adaptation strategies were assessed using simulations of an isentropic vortex, combining different point refinement mechanisms and collocation search methods. The mesh-free modelling was then successfully applied to transonic aerofoil simulations with automated point generation. A weighted pressure gradient metric prioritising high gradient regions with large point sizes was introduced to drive the adaptation. The mesh-free adaptation was found to effectively improve the shock resolution. The results highlight the potential of mesh-free methods in alleviating the meshing bottleneck in modern CFD.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 5","pages":"670-700"},"PeriodicalIF":1.8,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fld.5266","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139584649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comparative investigation of a time-dependent mesh method and physics-informed neural networks to analyze the generalized Kolmogorov–Petrovsky–Piskunov equation 分析广义科尔莫戈罗夫-彼得罗夫斯基-皮斯库诺夫方程的时变网格法和物理信息神经网络的比较研究
IF 1.8 4区 工程技术
International Journal for Numerical Methods in Fluids Pub Date : 2024-01-18 DOI: 10.1002/fld.5259
Saad Sultan, Zhengce Zhang
{"title":"A comparative investigation of a time-dependent mesh method and physics-informed neural networks to analyze the generalized Kolmogorov–Petrovsky–Piskunov equation","authors":"Saad Sultan,&nbsp;Zhengce Zhang","doi":"10.1002/fld.5259","DOIUrl":"10.1002/fld.5259","url":null,"abstract":"<p>The Kolmogorov–Petrovsky–Piskunov (KPP) partial differential equation (PDE) is solved in this article using the moving mesh finite difference technique (MMFDM) in conjunction with physics-informed neural networks (PINNs). We construct a time-dependent mesh to obtain approximate solutions for the KPP problem. The temporal derivative is discretized using a backward Euler, while the spatial derivatives are discretized using a central implicit difference scheme. Depending on the error measure, several moving mesh partial differential equations (MMPDEs) are employed along the arc-length and curvature mesh density functions (MDF). The proposed strategy has been suggested to yield remarkably precise and consistent results. To find the approximate solution, we additionally employ physics-informed neural networks (PINNs) to compare the outcomes of the adaptive moving mesh approach. It has been observed that solutions obtained using the moving mesh method (MMM) are sufficiently accurate, and the absolute error is also much lower than the PINNs.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 5","pages":"651-669"},"PeriodicalIF":1.8,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139498420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unconditionally stable fully-discrete finite element numerical scheme for active fluid model 主动流体模型的无条件稳定全离散有限元数值方案
IF 1.8 4区 工程技术
International Journal for Numerical Methods in Fluids Pub Date : 2024-01-18 DOI: 10.1002/fld.5260
Bo Wang, Yuxing Zhang, Guang-an Zou
{"title":"Unconditionally stable fully-discrete finite element numerical scheme for active fluid model","authors":"Bo Wang,&nbsp;Yuxing Zhang,&nbsp;Guang-an Zou","doi":"10.1002/fld.5260","DOIUrl":"10.1002/fld.5260","url":null,"abstract":"<p>In this paper, we propose a linear, decoupled, unconditionally stable fully-discrete finite element scheme for the active fluid model, which is derived from the gradient flow approach for an effective non-equilibrium free energy. The developed scheme is employed by an implicit-explicit treatment of the nonlinear terms and a second-order Gauge–Uzawa method for the decoupling of computations for the velocity and pressure. We rigorously prove the unique solvability and unconditional stability of the proposed scheme. Several numerical tests are presented to verify the accuracy, stability, and efficiency of the proposed scheme. We also simulate the self-organized motion under the various external body forces in 2D and 3D cases, including the motion direction of active fluid from disorder to order. Numerical results show that the scheme has a good performance in accurately capturing and handling the complex dynamics of active fluid motion.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 5","pages":"626-650"},"PeriodicalIF":1.8,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139498469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A finite element model for concentration polarization and osmotic effects in a membrane channel 膜通道中浓度极化和渗透效应的有限元模型
IF 1.8 4区 工程技术
International Journal for Numerical Methods in Fluids Pub Date : 2024-01-09 DOI: 10.1002/fld.5252
Nicolás Carro, David Mora, Jesus Vellojin
{"title":"A finite element model for concentration polarization and osmotic effects in a membrane channel","authors":"Nicolás Carro,&nbsp;David Mora,&nbsp;Jesus Vellojin","doi":"10.1002/fld.5252","DOIUrl":"10.1002/fld.5252","url":null,"abstract":"<p>In this article, we study a mathematical model that represents the concentration polarization and osmosis effects in a reverse osmosis cross-flow channel with dense membranes at some of its boundaries. The fluid is modeled using the Navier–Stokes equations and the solution-diffusion is used to impose the momentum balance on the membrane. The scheme consist of a conforming finite element method with the velocity–pressure formulation for the Navier–Stokes equations, together with a primal scheme for the convection–diffusion equations. The Nitsche's method is used to impose the permeability condition across the membrane. Several numerical experiments are performed to show the robustness of the method. The resulting model accurately replicates the analytical models and predicts similar results to previous works. It is found that the submerged configuration has the highest permeate production, but also has the greatest pressure loss of all three configurations studied.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 5","pages":"601-625"},"PeriodicalIF":1.8,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139411739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Piecewise circular interface construction using height functions 利用高度函数构建分片圆形界面
IF 1.8 4区 工程技术
International Journal for Numerical Methods in Fluids Pub Date : 2024-01-04 DOI: 10.1002/fld.5256
Ram Kumar Maity, T. Sundararajan, K. Velusamy
{"title":"Piecewise circular interface construction using height functions","authors":"Ram Kumar Maity,&nbsp;T. Sundararajan,&nbsp;K. Velusamy","doi":"10.1002/fld.5256","DOIUrl":"10.1002/fld.5256","url":null,"abstract":"<p>A piecewise circular interface construction (PCIC) method is described, where height functions based curvature estimates are directly utilised for accurate interface reconstruction under the framework of volume of fluid method. The present work is an attempt to develop a robust and accurate higher order interface reconstruction algorithm that is capable of accurate simulation of surface tension dominated flows. The proposed hybrid method (H-PCIC) is thus able to take advantage of merits of both PCIC and HF methods, achieving at least second order convergence with respect to both interface reconstruction and curvature computation. This is in addition to the significantly superior quality of the reconstructed interface with respect to PLIC methods. This seamless blending of the HF and PCIC quantities is enabled by c0-correction procedures applied to base PLIC and initial PCIC steps. More recent variants of the height function method with variable stencil size are used for calculation of radius of curvature. The capability of this proposed method towards simulation of flow problems within a well-balanced two-phase solver is established with help of multiple complex two-phase flow problems. This validation exercise also demonstrates the capability of PCIC class of methods towards solutions of two-phase flows with intricate physics.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 4","pages":"574-599"},"PeriodicalIF":1.8,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139385094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
General vorticity-streamfunction formulation for incompressible binary flow with arbitrary density ratio 具有任意密度比的不可压缩二元流的一般涡度-流函数公式
IF 1.8 4区 工程技术
International Journal for Numerical Methods in Fluids Pub Date : 2024-01-01 DOI: 10.1002/fld.5257
Yanan Zhu, Yongchang Yang, Feng Ren
{"title":"General vorticity-streamfunction formulation for incompressible binary flow with arbitrary density ratio","authors":"Yanan Zhu,&nbsp;Yongchang Yang,&nbsp;Feng Ren","doi":"10.1002/fld.5257","DOIUrl":"10.1002/fld.5257","url":null,"abstract":"<p>The classical vorticity-streamfunction formulation (VSF) can avoid the difficulty in the calculation of pressure gradient term of the Navier Stokes equation via eliminating pressure gradient term from the theoretical basis. Within this context we propose a general VSF, together with redefined vorticity and streamfunction, so as to realize numerically stable and reliable simulations of binary fluids with an arbitrary density contrast. By incorporating the interface-tracking phase-field model based on the conservative Allen-Cahn equation [Phys. Rev. E 94, 023311 (2016)], the binary flow simulation framework is established. Numerical tests are conducted using the Lattice Boltzmann method (LBM), which is usually regarded as an easy-to-use tool for solving the Navier–Stokes equation but generally suffers from the drawback of not being capable of enforcing incompressibility. The LBM herein functions as a numerical tool for solving the vorticity transport equation, the streamfunction equation, and the conservative Allen-Cahn equation. Three two-dimensional benchmark cases, i.e., the Capillary wave, the Rayleigh–Taylor instability, and the droplet splashing on a thin liquid film, are discussed in detail to verify the present methodology. Results show good agreements with both analytical predictions and literature data, as well as good numerical stability in terms of high density ratio and high Reynolds number. Overall, the general VSF inherits the intrinsic superiority of the classical VSF in enforcing incompressibility, and offers a useful and reliable alternative for binary flow modeling.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 4","pages":"561-573"},"PeriodicalIF":1.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139393990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scaled ILU smoothers for Navier–Stokes pressure projection 用于纳维-斯托克斯压力投影的按比例 ILU 平滑器
IF 1.8 4区 工程技术
International Journal for Numerical Methods in Fluids Pub Date : 2023-12-28 DOI: 10.1002/fld.5254
Stephen Thomas, Arielle Carr, Paul Mullowney, Katarzyna Świrydowicz, Marcus Day
{"title":"Scaled ILU smoothers for Navier–Stokes pressure projection","authors":"Stephen Thomas,&nbsp;Arielle Carr,&nbsp;Paul Mullowney,&nbsp;Katarzyna Świrydowicz,&nbsp;Marcus Day","doi":"10.1002/fld.5254","DOIUrl":"10.1002/fld.5254","url":null,"abstract":"<p>Incomplete LU (ILU) smoothers are effective in the algebraic multigrid (AMG) <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>V</mi>\u0000 </mrow>\u0000 <annotation>$$ V $$</annotation>\u0000 </semantics></math>-cycle for reducing high-frequency components of the error. However, the requisite direct triangular solves are comparatively slow on GPUs. Previous work has demonstrated the advantages of Jacobi iteration as an alternative to direct solution of these systems. Depending on the threshold and fill-level parameters chosen, the factors can be highly nonnormal and Jacobi is unlikely to converge in a low number of iterations. We demonstrate that row scaling can reduce the departure from normality, allowing us to replace the inherently sequential solve with a rapidly converging Richardson iteration. There are several advantages beyond the lower compute time. Scaling is performed locally for a diagonal block of the global matrix because it is applied directly to the factor. Further, an ILUT Schur complement smoother maintains a constant GMRES iteration count as the number of MPI ranks increases, and thus parallel strong-scaling is improved. Our algorithms have been incorporated into hypre, and we demonstrate improved time to solution for linear systems arising in the Nalu-Wind and PeleLM pressure solvers. For large problem sizes, GMRES<math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>+</mo>\u0000 </mrow>\u0000 <annotation>$$ + $$</annotation>\u0000 </semantics></math>AMG executes at least five times faster when using iterative triangular solves compared with direct solves on massively parallel GPUs.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 4","pages":"537-560"},"PeriodicalIF":1.8,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139068698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel coupled Euler–Lagrange method for high resolution shock and discontinuities capturing 用于高分辨率冲击和不连续性捕捉的新型欧拉-拉格朗日耦合方法
IF 1.8 4区 工程技术
International Journal for Numerical Methods in Fluids Pub Date : 2023-12-17 DOI: 10.1002/fld.5255
Ziyan Jin, Jianguo Ning, Xiangzhao Xu
{"title":"A novel coupled Euler–Lagrange method for high resolution shock and discontinuities capturing","authors":"Ziyan Jin,&nbsp;Jianguo Ning,&nbsp;Xiangzhao Xu","doi":"10.1002/fld.5255","DOIUrl":"10.1002/fld.5255","url":null,"abstract":"<p>The accurate capturing of shock waves by numerical methods has long been a focus of attention in engineering owing to singularity problems in discontinuities. In this article, a novel coupled Euler–Lagrange method (CELM) is proposed to capture shock waves and discontinuities with high resolution and high order of mapping accuracy. CELM arranges the Lagrange particles on an Euler grid to track the discontinuous points automatically, and the data pertaining to the grids and particles interact via a weighted mutual mapping method that not only achieves fourth-order accuracy in a smooth area of the solution but also maintains a steep discontinuous transition in the discontinuous area. In the virtual particle method, virtual particles are derived from the existing real particles; thus, the inflow and outflow of the particles and interpolation accuracy of the boundary are more easily realized. An accuracy test and energy convergence test demonstrated the fourth-order convergence accuracy and low energy dissipation of the CELM; the method exhibited lower error and better conservation ability than high-precision schemes such as WENO3 and WENO5. The Sod shock tube problem and Woodward–Colella problem showed higher discontinuity resolution of the CELM and ability to accurately track discontinuity points. Examples of Riemann problems were employed to prove that the CELM exhibits lower dissipation and higher shock resolution than WENO3 and WENO5. The CELM also showed an accurate structure based on particle distribution. Shockwave diffraction tests were conducted to prove that the CELM results showed good agreement with the experimental data and exhibited an accurate expansion wave. The CELM can also accurately simulate the collision of an expansion wave and vortex.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 4","pages":"510-536"},"PeriodicalIF":1.8,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138966065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信