{"title":"A third-order entropy condition scheme for hyperbolic conservation laws","authors":"Haitao Dong, Tong Zhou, Fujun Liu","doi":"10.1002/fld.5268","DOIUrl":"10.1002/fld.5268","url":null,"abstract":"<p>Following the solution formula method given in Dong et al. (High order discontinuities decomposition entropy condition schemes for Euler equations. <i>CFD J</i>. 2002;10(4): 448–457), this article studies a type of one-step fully-discrete scheme, and constructs a third-order scheme which is written into a compact form via a new limiter. The highlights of this study and advantages of new third-order scheme are as follows: ① We proposed a very simple new methodology of constructing one-step, consistent high-order and non-oscillation schemes that do not rely on Runge–Kutta method; ② We systematically studied new scheme's theoretical problems about entropy conditions, error analysis, and non-oscillation conditions; ③ The new scheme achieves exact solution in linear cases and performing better in nonlinear cases when CFL → 1; ④ The new scheme is third order but high resolution with excellent shock-capturing capacity which is comparable to fifth order WENO scheme; ⑤ CPU time of new scheme is only a quarter of WENO5 + RK3 under same computing condition; ⑥ For engineering applications, the new scheme is extended to multi-dimensional Euler equations under curvilinear coordinates. Numerical experiments contain 1D scalar equation, 1D,2D,3D Euler equations. Accuracy tests are carried out using 1D linear scalar equation, 1D Burgers equation and 2D Euler equations and two sonic point tests are carried out to show the effect of entropy condition linearization. All tests are compared with results of WENO5 and finally indicate EC3 is cheaper in computational expense.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 6","pages":"930-961"},"PeriodicalIF":1.8,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139956327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A parallel grad-div stabilized finite element algorithm for the Navier–Stokes equations with a nonlinear damping term","authors":"Ye Jiang, Bo Zheng, Yueqiang Shang","doi":"10.1002/fld.5267","DOIUrl":"10.1002/fld.5267","url":null,"abstract":"<p>In this work, we propose a parallel grad-div stabilized finite element algorithm for the Navier–Stokes equations attached with a nonlinear damping term, using a fully overlapping domain decomposition approach. In the proposed algorithm, we calculate a local solution in a defined subdomain on a global composite mesh which is fine around the defined subdomain and coarse in other regions. The algorithm is simple to carry out on the basis of available sequential solvers. By a local a priori estimate of the finite element solution, we deduce error bounds of the approximations from our presented algorithm. We perform also some numerical experiments to verify the effectiveness of the proposed algorithm.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 6","pages":"902-929"},"PeriodicalIF":1.8,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139951460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Employment of an efficient particle tracking algorithm based on barycentric coordinates in hybrid finite-volume/probability-density-function Monte Carlo methods","authors":"Mohamad Bagher Barezban, Masoud Darbandi","doi":"10.1002/fld.5263","DOIUrl":"10.1002/fld.5263","url":null,"abstract":"<p>One main concern of this work is to develop an efficient particle-tracking-managing algorithm in the framework of a hybrid pressure-based finite-volume/probability-density-function (FV/PDF) Monte-Carlo (MC) solution algorithm to extend the application of FV/PDF MC methods to absolutely incompressible flows and speedup the convergence rate of solving the fluctuating velocity-turbulent frequency joint PDF equation in turbulent flow simulations. Contrary to the density-based algorithms, the pressure-based algorithms have stable convergence rates even in zero-Mach number flows. As another contribution, literature shows that the past developed methods mostly used mesh searching techniques to attribute particles to cells at the beginning of each tracking time-step. Also, they had to calculate the linear basis functions at every time-step to estimate the particle mean fields and interpolate the data. These calculations would be computationally very expensive, time-consuming, and inefficient in computational domains with arbitrary-shaped 3D meshes. As known, the barycentric tracking is a continuous particle tracking method, which provides more efficiency in case of handling 3D domains with general mesh shapes. The barycentric tracking eliminates any mesh searching technique and readily provides the convenient linear basis functions. So, this work benefits from these advantages and tracks the particles based on their barycentric coordinates. It leads to less computational work and a better efficiency for the present method. A bluff-body turbulent flow case is examined to validate the present FV/PDF MC method. From the accuracy perspective, it is shown that the results of the present algorithm are in great agreement with experimental data and available numerical solutions. The present study shows that the number of particle time-steps required to reach the statistically steady-state condition is at least one-sixth less than the previously developed algorithms. This also approves a faster convergence rate for the present hybrid pressure-based algorithm.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 6","pages":"884-901"},"PeriodicalIF":1.8,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139839461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ehsan Jafari Nodoushan, Mohanna Tajnesaie, Ahmad Shakibaeinia
{"title":"Two- and three-dimensional multiphase mesh-free particle modeling of transitional landslide with μ(I) rheology","authors":"Ehsan Jafari Nodoushan, Mohanna Tajnesaie, Ahmad Shakibaeinia","doi":"10.1002/fld.5274","DOIUrl":"10.1002/fld.5274","url":null,"abstract":"<p>Landslides, which are the sources of most catastrophic natural disasters, can be subaerial (dry), submerged (underwater), or semi-submerged (transitional). Semi-submerged or transitional landslides occur when a subaerial landslide enters water and turns to submerged condition. Predicting the behavior of such a highly dynamic multi-phase granular flow system is challenging, mainly due to the water entry effects, such as wave impact and partial saturation (and resulted cohesion). The mesh-free particle methods, such as the moving particle semi-implicit (MPS) method, have proven their capabilities for the simulation of the highly dynamic multiphase systems. This study develops and evaluates a numerical model, based on the MPS particle method in combination with the <i>μ</i>(<i>I</i>) rheological model, to simulate the morphodynamic of the granular mass in semi-submerged landslides in two and three dimensions. An algorithm is developed to consider partial saturation (and resulting cohesion) during the water entry. Comparing the numerical results with the experimental measurements shows the ability of the proposed model to accurately reproduce the morphological evolution of the granular mass, especially at the moment of water entry.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 5","pages":"823-850"},"PeriodicalIF":1.8,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139783150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A novel stabilized nodal integration formulation using particle finite element method for incompressible flow analysis","authors":"Lu-Jia Yu, Yin-Fu Jin, Zhen-Yu Yin, Jian-Fei Chen","doi":"10.1002/fld.5271","DOIUrl":"10.1002/fld.5271","url":null,"abstract":"<p>In simulations using the particle finite element method (PFEM) with node-based strain smoothing technique (NS-PFEM) to simulate the incompressible flow, spatial and temporal instabilities have been identified as crucial problems. Accordingly, this study presents a stabilized NS-PFEM-FIC formulation to simulate an incompressible fluid with free-surface flow. In the proposed approach, (1) stabilization is achieved by implementing the gradient strain field in place of the constant strain field over the smoothing domains, handling spatial and temporal instabilities in direct nodal integration; (2) the finite increment calculus (FIC) stabilization terms are added using nodal integration, and a three-step fractional step method is adopted to update pressures and velocities; and (3) a novel slip boundary with the predictor–corrector algorithm is developed to deal with the interaction between the free-surface flow with rigid walls, avoiding the pressure concentration induced by standard no-slip condition. The proposed stabilized NS-PFEM-FIC is validated via several classical numerical cases (hydrostatic test, water jet impinging, water dam break, and water dam break on a rigid obstacle). Comparisons of all simulations to the experimental results and other numerical solutions reveal good agreement, demonstrating the strong ability of the proposed stabilized NS-PFEM-FIC to solve incompressible free-surface flow with high accuracy and promising application prospects.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 6","pages":"853-883"},"PeriodicalIF":1.8,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139842814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comment on the paper “an explicit-implicit numerical scheme for time fractional boundary layer flows, International Journal for Numerical Methods in Fluids, 2022, 94:920–940”","authors":"Asterios Pantokratoras","doi":"10.1002/fld.5270","DOIUrl":"10.1002/fld.5270","url":null,"abstract":"","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 6","pages":"851-852"},"PeriodicalIF":1.8,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139785203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Moving least-squares aided finite element method: A powerful means to predict flow fields in the presence of a solid part","authors":"Mehdi Mostafaiyan, Sven Wießner, Gert Heinrich","doi":"10.1002/fld.5261","DOIUrl":"10.1002/fld.5261","url":null,"abstract":"<p>With the assistance of the moving least-squares (MLS) interpolation functions, a two-dimensional finite element code is developed to consider the effects of a stationary or moving solid body in a flow domain. At the same time, the mesh or grid is independent of the shape of the solid body. We achieve this goal in two steps. In the first step, we use MLS interpolants to enhance the pressure (P) and velocity (V) shape functions. By this means, we capture different discontinuities in a flow domain. In our previous publications, we have named this technique the PVMLS method (pressure and velocity shape functions enhanced by the MLS interpolants) and described it thoroughly. In the second step, we modify the PVMLS method (the M-PVMLS method) to consider the effect of a solid part(s) in a flow domain. To evaluate the new method's performance, we compare the results of the M-PVMLS method with a finite element code that uses boundary-fitted meshes.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 5","pages":"806-822"},"PeriodicalIF":1.8,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fld.5261","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139845306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chong Chen, Chang Lu, Guangqing Xia, Maolin Chen, Bin Sun
{"title":"A sharp immersed method for electrohydrodynamic flows accompanied by charge evaporation","authors":"Chong Chen, Chang Lu, Guangqing Xia, Maolin Chen, Bin Sun","doi":"10.1002/fld.5269","DOIUrl":"10.1002/fld.5269","url":null,"abstract":"<p>This article presents a sharp immersed method for simulating electrohydrodynamic (EHD) flows that involve charge evaporation. This well-known multi-scale, multi-physics problem is widely used in various fields, including industry and medicine. The method adopts a fully sharp model, where surface tension and Maxwell stress are treated as surface forces and free charges are concentrated on the zero thickness liquid-vacuum interface. Incorporating charge evaporation imposes strict restrictions on the time-step, as the rate of evaporation sharply increases with surface evolution. To overcome this challenge, an iterative algorithm that couples the electric field and surface charge density is proposed to obtain accurate results, even with significantly large time-steps. To mitigate the numerical residuals near the interface, which may introduce parasitic flows and cause numerical instability, an immersed interface method-based iterative projection method for the Navier–Stokes equations is proposed, in which a traction boundary condition involving multiple surface forces is imposed on the sharp interface. Numerical experiments were carried out, and the results show that the method is splitting-error-free and stable. The sharp immersed method is applied to simulate the electric-induced deformation of an ionic liquid drop with charge evaporation. The results indicate that charge evaporation can suppress the sharp development of Taylor cones at the ends of the drops. These findings have significant implications for the design and optimization of EHD systems in various applications.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 5","pages":"766-788"},"PeriodicalIF":1.8,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139956968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High-order gas kinetic flux solver for viscous compressible flow simulations","authors":"Lan Jiang, Jie Wu, Liming Yang, Hao Dong","doi":"10.1002/fld.5272","DOIUrl":"10.1002/fld.5272","url":null,"abstract":"<p>Although the gas kinetic schemes (GKS) have emerged as one of the powerful tools for simulating compressible flows, they exhibit several shortcomings. Since the local solution of continuous Boltzmann equation with the Maxwellian distribution function is used to calculate the numerical fluxes at the cell interface, the flux expression in GKS is usually more complicated. In this paper, a high-order simplified gas kinetic flux solver (GKFS) is presented for simulating two-dimensional compressible flows. Circular function-based GKFS (C-GKFS), which simplifies the Maxwellian distribution function into the circular function, combined with an improved weighted essentially non-oscillatory (WENO-Z) scheme is applied to capture more details of the flow fields with fewer grids. As a result, a simple high-order accurate C-GKFS is obtained, which improves the computing efficiency and reduce its complexity to facilitate the practical application of engineering. A series of benchmark-test problems are simulated and good agreement can be obtained compared with the references, which demonstrate that the high-order C-GKFS can achieve the desired accuracy.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 5","pages":"789-805"},"PeriodicalIF":1.8,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139852015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yaguang Liu, Chang Shu, Peng Yu, Yangyang Liu, Hua Zhang, Chun Lu
{"title":"Development of a Fourier-expansion based differential quadrature method with lattice Boltzmann flux solvers: Application to incompressible isothermal and thermal flows","authors":"Yaguang Liu, Chang Shu, Peng Yu, Yangyang Liu, Hua Zhang, Chun Lu","doi":"10.1002/fld.5262","DOIUrl":"10.1002/fld.5262","url":null,"abstract":"<p>This paper presents a high-order Fourier-expansion based differential quadrature method with isothermal and thermal lattice Boltzmann flux solvers (LBFS-FDQ and TLBFS-FDQ) for simulating incompressible flows. The numerical solution in the present method is approximated via trigonometric basis. Therefore, both periodic and non-periodic boundary conditions can be handled straightforwardly without the special treatments as required by polynomial-based differential quadrature methods. The incorporation of LBFS/TLBFS enables the present methods to efficiently simulated various types of flow problems on considerably coarse grids with spectral accuracy. The high-order accuracy, efficiency and competitiveness of the proposed method are comprehensively demonstrated through a wide selection of isothermal and thermal flow benchmarks.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 5","pages":"738-765"},"PeriodicalIF":1.8,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139806972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}