An Improved Single-Layer Smoothed Particle Hydrodynamics Model for Water–Soil Two-Phase Flow

IF 1.7 4区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Zi-Yang Zhan, Zi-Xin Zhou, Zhen Chen
{"title":"An Improved Single-Layer Smoothed Particle Hydrodynamics Model for Water–Soil Two-Phase Flow","authors":"Zi-Yang Zhan,&nbsp;Zi-Xin Zhou,&nbsp;Zhen Chen","doi":"10.1002/fld.5371","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In coastal and offshore engineering, the intense water–soil motion poses significant challenges to the safety of buildings and structures. The smoothed particle hydrodynamics (SPH) method, as a mesh-free Lagrangian solver, has considerable advantages in the numerical resolution of such problems. SPH models for the water–soil two-phase flow can be categorized into the multilayer type and the single-layer type. Although the single-layer model envisions a simpler algorithm and higher computational efficiency, its accuracy, stability, and recovery of interfacial details are far from satisfactory. In the present work, an improved single-layer model is established to alleviate these limitations. First, the soakage function, which takes effect near the phase interface, is introduced to characterize the two-phase coupling status. Additionally, the stress diffusion term and a modified density diffusion term applicable in density discontinuity scenario are introduced to ease the numerical oscillation. Finally, to remove the unphysical voids in the interfacial region, the particle shifting technique with special treatment tailored for free-surface particles is implemented. Validations of the proposed model are carried out by a number of numerical tests, including the erodible dam-break problem, the wall-jet scouring, the flushing case, and the water jet excavation. Appealing agreements with either experimental data or published numerical results have been achieved, which verifies the accuracy, stability, and robustness of the proposed model for water–soil two-phase flows.</p>\n </div>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"97 4","pages":"546-564"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Fluids","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fld.5371","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In coastal and offshore engineering, the intense water–soil motion poses significant challenges to the safety of buildings and structures. The smoothed particle hydrodynamics (SPH) method, as a mesh-free Lagrangian solver, has considerable advantages in the numerical resolution of such problems. SPH models for the water–soil two-phase flow can be categorized into the multilayer type and the single-layer type. Although the single-layer model envisions a simpler algorithm and higher computational efficiency, its accuracy, stability, and recovery of interfacial details are far from satisfactory. In the present work, an improved single-layer model is established to alleviate these limitations. First, the soakage function, which takes effect near the phase interface, is introduced to characterize the two-phase coupling status. Additionally, the stress diffusion term and a modified density diffusion term applicable in density discontinuity scenario are introduced to ease the numerical oscillation. Finally, to remove the unphysical voids in the interfacial region, the particle shifting technique with special treatment tailored for free-surface particles is implemented. Validations of the proposed model are carried out by a number of numerical tests, including the erodible dam-break problem, the wall-jet scouring, the flushing case, and the water jet excavation. Appealing agreements with either experimental data or published numerical results have been achieved, which verifies the accuracy, stability, and robustness of the proposed model for water–soil two-phase flows.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal for Numerical Methods in Fluids
International Journal for Numerical Methods in Fluids 物理-计算机:跨学科应用
CiteScore
3.70
自引率
5.60%
发文量
111
审稿时长
8 months
期刊介绍: The International Journal for Numerical Methods in Fluids publishes refereed papers describing significant developments in computational methods that are applicable to scientific and engineering problems in fluid mechanics, fluid dynamics, micro and bio fluidics, and fluid-structure interaction. Numerical methods for solving ancillary equations, such as transport and advection and diffusion, are also relevant. The Editors encourage contributions in the areas of multi-physics, multi-disciplinary and multi-scale problems involving fluid subsystems, verification and validation, uncertainty quantification, and model reduction. Numerical examples that illustrate the described methods or their accuracy are in general expected. Discussions of papers already in print are also considered. However, papers dealing strictly with applications of existing methods or dealing with areas of research that are not deemed to be cutting edge by the Editors will not be considered for review. The journal publishes full-length papers, which should normally be less than 25 journal pages in length. Two-part papers are discouraged unless considered necessary by the Editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信